Question 10.34: Find the (Lorenz gauge) potentials and fields of a time-depe...

Find the (Lorenz gauge) potentials and fields of a time-dependent ideal electric dipole p(t) at the origin .^{23} (It is stationary, but its magnitude and/or direction are changing with time.) Don’t bother with the contact term. [Answer:

V( r , t)=\frac{1}{4 \pi \epsilon_{0}} \frac{\hat{ r }}{r^{2}} \cdot[ p +(r / c) \dot{ p }]

 

A ( r , t)=\frac{\mu_{0}}{4 \pi}\left[\frac{\dot{ p }}{r}\right]

 

E ( r , t)=-\frac{\mu_{0}}{4 \pi}\left\{\frac{\ddot{ p }-\hat{ r }(\hat{ r } \cdot \ddot{ p })}{r}+c^{2} \frac{[ p +(r / c) \dot{ p }]-3 \hat{ r }(\hat{ r } \cdot[ p +(r / c) \dot{ p }])}{r^{3}}\right\}

 

B ( r , t)=-\frac{\mu_{0}}{4 \pi}\left\{\frac{\hat{ r } \times[\dot{ p }+(r / c) \ddot{ p }]}{r^{2}}\right\}                                            (10.79)

where all the derivatives of p are evaluated at the retarded time.]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The retarded potentials are

V( r , t)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left( r ^{\prime}, t_{r}\right)}{ᴫ} d \tau^{\prime}, \quad A ( r , t)=\frac{\mu_{0}}{4 \pi} \int \frac{ J \left( r ^{\prime}, t_{r}\right)}{ᴫ} d \tau^{\prime} .

We want a source localized at the origin, so we expand in powers of r ^{\prime}, keeping terms up to first order:

ᴫ ^{2}=\left( r – r ^{\prime}\right) \cdot\left( r – r ^{\prime}\right)=r^{2}-2 r \cdot r ^{\prime}+\left(r^{\prime}\right)^{2} ,

ᴫ \approx r\left(1-\frac{ r \cdot r ^{\prime}}{r^{2}}\right) ,

\frac{1}{ᴫ} \approx \frac{1}{r}\left(1+\frac{ r \cdot r ^{\prime}}{r^{2}}\right) ,

t-\frac{ᴫ}{c} \approx t-\frac{r}{c}+\frac{ r \cdot r ^{\prime}}{r c}=t_{0}+\frac{ r \cdot r ^{\prime}}{r c} ,

where t_{0} \equiv t-r / c is the retarded time for a source at the origin. Thus (Taylor expanding about t_{0})

\rho\left( r ^{\prime}, t_{r}\right)=\rho\left( r ^{\prime}, t-\frac{ᴫ}{c}\right) \approx \rho\left( r ^{\prime}, t_{0}\right)+\frac{ r \cdot r ^{\prime}}{r c} \dot{\rho}\left( r ^{\prime}, t_{0}\right) ,

\frac{\rho\left( r ^{\prime}, t_{r}\right)}{ᴫ}=\frac{1}{r}\left(1+\frac{ r \cdot r ^{\prime}}{r^{2}}\right)\left[\rho\left( r ^{\prime}, t_{0}\right)+\frac{ r \cdot r ^{\prime}}{r c} \dot{\rho}\left( r ^{\prime}, t_{0}\right)\right] \approx \frac{1}{r} \rho\left( r ^{\prime}, t_{0}\right)+\frac{ r \cdot r ^{\prime}}{r^{3}} \rho\left( r ^{\prime}, t_{0}\right)+\frac{ r \cdot r ^{\prime}}{r^{2} c} \dot{\rho}\left( r ^{\prime}, t_{0}\right) ,

and hence

V( r , t)=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{1}{r} \int \rho\left( r ^{\prime}, t_{0}\right) d \tau^{\prime}+\frac{ r }{r^{3}} \cdot \int r ^{\prime} \rho\left( r ^{\prime}, t_{0}\right) d \tau^{\prime}+\frac{ r }{r^{2} c} \cdot \int r ^{\prime} \dot{\rho}\left( r ^{\prime}, t_{0}\right) d \tau^{\prime}\right] .

The first integral is the total charge of the dipole, which is zero; the second integral is the dipole moment, and the third is the time derivative of the dipole moment:

V( r , t)=\frac{1}{4 \pi \epsilon_{0}} \frac{\hat{ r }}{r^{2}} \cdot\left[ p \left(t_{0}\right)+\frac{r}{c} \dot{ p }\left(t_{0}\right)\right] .

By the same reasoning, the vector potential is

A ( r , t)=\frac{\mu_{0}}{4 \pi}\left[\frac{1}{r} \int J \left( r ^{\prime}, t_{0}\right) d \tau^{\prime}+\frac{1}{r^{3}} \int\left( r \cdot r ^{\prime}\right) J \left( r ^{\prime}, t_{0}\right) d \tau^{\prime}+\frac{1}{r^{2} c} \int\left( r \cdot r ^{\prime}\right) \dot{ J }\left( r ^{\prime}, t_{0}\right) d \tau^{\prime}\right].

From Eq. 5.31 1 \int J \left( r ^{\prime}, t\right) d \tau^{\prime}=\dot{ p }(t), \text { and } J =\rho v ^{\prime}=\rho\left(d r ^{\prime} / d t\right) \text { is already first order in } r^{\prime} , so the second and third integrals are second order, and we drop them.

\int_{ \nu } J d \tau=d p / d t                                (5.31)

A ( r , t)=\frac{\mu_{0}}{4 \pi}\left[\frac{\dot{ p }\left(t_{0}\right)}{r}\right] .

In calculating the fields, remember that the dipole moments themselves depend on r, through their argument \left(t_{0}=t-r / c\right). For a function of t_{0} alone,

\nabla f\left(t_{0}\right)=\frac{d f}{d t_{0}} \nabla t_{0}=\dot{f}\left(-\frac{1}{c} \nabla r\right)=-\frac{1}{c} \dot{f} \hat{ r } ,

so you simply replace \nabla \text { by }-\frac{\hat{ r }}{c} \frac{d}{d t} . \text { For a structure of the form }\left[f\left(t_{0}\right)+\frac{r}{c} \dot{f}\left(t_{0}\right)\right]

 

\nabla \left[f\left(t_{0}\right)+\frac{r}{c} \dot{f}\left(t_{0}\right)\right]=-\frac{\hat{ r }}{c} \dot{f}+\frac{r}{c}\left(-\frac{\hat{ r }}{c} \ddot{f}\right)+\frac{\dot{f}}{c} \hat{ r }=-\frac{ r }{c^{2}} \ddot{f} .

Using the product rule for (A · B):

\nabla V=\frac{1}{4 \pi \epsilon_{0}}\left\{\frac{\hat{ r }}{r^{2}} \times\left( \nabla \times\left[ p +\frac{r}{c} \dot{ p }\right]\right)+\left[ p +\frac{r}{c} \dot{ p }\right] \times\right. \left.\left( \nabla \times \frac{\hat{ r }}{r^{2}}\right)+\left(\frac{\hat{ r }}{r^{2}} \cdot \nabla \right)\left[ p +\frac{r}{c} \dot{ p }\right]+\left(\left[ p +\frac{r}{c} \dot{ p }\right] \cdot \nabla \right) \frac{\hat{ r }}{r^{2}}\right\}

 

=\frac{1}{4 \pi \epsilon_{0}}\left\{\frac{\hat{ r }}{r^{2}} \times\left(-\frac{ r }{c^{2}} \times \ddot{ p }\right)+ 0 +\left[\frac{\hat{ r }}{r^{2}} \cdot\left(-\frac{ r }{c^{2}}\right)\right] \ddot{ p }+\frac{1}{r^{3}}\left(\left[ p +\frac{r}{c} \dot{ p }\right]-3 \hat{ r }\left(\hat{ r } \cdot\left[ p +\frac{r}{c} \dot{ p }\right]\right)\right)\right\}

 

=\frac{1}{4 \pi \epsilon_{0}}\left\{-\frac{\hat{ r }(\hat{ r } \cdot \ddot{ p })}{r c^{2}}+\frac{[ p +(r / c) \dot{ p }]-3 \hat{ r }(\hat{ r } \cdot[ p +(r / c) \dot{ p }])}{r^{3}}\right\} .

The others are easier:

\nabla \times A =\frac{\mu_{0}}{4 \pi}\left[\frac{1}{r}( \nabla \times \dot{ p })-\dot{ p } \times\left( \nabla \frac{1}{r}\right)\right]=\frac{\mu_{0}}{4 \pi}\left[\frac{1}{r}\left(-\frac{\hat{ r }}{c} \times \ddot{ p }\right)+\left(\dot{ p } \times \frac{\hat{ r }}{r^{2}}\right)\right]=-\frac{\mu_{0}}{4 \pi}\left\{\frac{\hat{ r } \times[(\dot{ p }+(r / c) \ddot{ p }]}{r^{2}}\right\} ,

\frac{\partial A }{\partial t}=\frac{\mu_{0}}{4 \pi}\left(\frac{\ddot{ p }}{r}\right) .

The fields are therefore

E ( r , t)=- \nabla V-\frac{\partial A }{\partial t}=-\frac{\mu_{0}}{4 \pi}\left\{\frac{\ddot{ p }-\hat{ r }(\hat{ r } \cdot \ddot{ p })}{r}+c^{2} \frac{[ p +(r / c) \dot{ p }]-3 \hat{ r }(\hat{ r } \cdot[ p +(r / c) \dot{ p }])}{r^{3}}\right\} ,

B ( r , t)= \nabla \times A =-\frac{\mu_{0}}{4 \pi}\left\{\frac{\hat{ r } \times[\dot{ p }+(r / c) \ddot{ p }]}{r^{2}}\right\}

(with all dipole moments evaluated at the retarded time t_{0}=t-r / c).

Related Answered Questions