Question 11.21: ^19 An electric dipole rotates at constant angular velocity ...

^{19} An electric dipole rotates at constant angular velocity ω in the xy plane. (The charges, ±q, are at r _{\pm}=\pm R(\cos \omega t \hat{ x }+\sin \omega t \hat{ y }); the magnitude of the dipole moment is p = 2q R.)

(a) Find the interaction term in the self-torque (analogous to Eq. 11.99). Assume
the motion is nonrelativistic (
ωRc).

F_{ rad }^{ int }=\frac{\mu_{0} q^{2} \dot{a}}{12 \pi c}                     (11.99)

(b) Use the method of Prob. 11.20(a) to obtain the total radiation reaction torque on this system. \left[\text { Answer: }-\frac{\mu_{0} p^{2} \omega^{3}}{6 \pi c} \hat{ z } .\right]

(c) Check that this result is consistent with the power radiated (Eq. 11.60).

P_{ rad }\left(t_{0}\right) \cong \frac{\mu_{0}}{6 \pi c}\left[\ddot{p}\left(t_{0}\right)\right]^{2}                           (11.60)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The total torque is twice the torque on +q; we might as well calculate it at time t = 0. First we need the electric field at +q, due to q when it was at the retarded point P (Eq. 10.72).

E ( r , t)=\frac{q}{4 \pi \epsilon_{0}} \frac{ᴫ}{( ᴫ \cdot u )^{3}}\left[\left(c^{2}-v^{2}\right) u + ᴫ \times( u \times a )\right]                              (10.72)<span
class=”fontstyle0″>From the figure, \hat{ ᴫ}=\cos \theta \hat{ x }-\sin \theta \hat{ y }, \quad ᴫ=2 R \cos \theta . The velocity of –q (at P) was v =-\omega R(\sin 2 \theta \hat{ x }+\cos 2 \theta \hat{ y }) , and its acceleration was a =\omega^{2} R(\cos 2 \theta \hat{ x }-\sin 2 \theta \hat{ y }) . Quantities we will need in Eq. 10.72 are:
u =c \hat{ ᴫ }- v =(c \cos \theta+\omega R \sin 2 \theta) \hat{ x }-(c \sin \theta-\omega R \cos 2 \theta) \hat{ y },

ᴫ\cdot u =2 R \cos \theta(c+\omega R \sin \theta) ᴫ \cdot a =2(\omega R \cos \theta)^{2}.
E =\frac{-q}{4 \pi \epsilon_{0}} \frac{2 R \cos \theta}{(2 R \cos \theta)^{3}(c+\omega R \sin \theta)^{3}}\left\{\left[c^{2}-(\omega R)^{2}+2(\omega R \cos \theta)^{2}\right][(c \cos \theta+\omega R \sin 2 \theta) \hat{ x }-(c \sin \theta-\omega R \cos 2 \theta) \hat{ y }]\right.
\left.-2 R \cos \theta(c+\omega R \sin \theta) \omega^{2} R(\cos 2 \theta \hat{ x }-\sin 2 \theta \hat{ y })\right\}

The total torque (about the origin) is

N =2(R \hat{ x }) \times(q E )=\frac{-2 q^{2} R}{4 \pi \epsilon_{0}} \frac{\hat{ z }}{(2 R \cos \theta)^{2}(c+\omega R \sin \theta)^{3}}\left\{-\left[c^{2}-(\omega R)^{2}+2(\omega R \cos \theta)^{2}\right](c \sin \theta-\omega R \cos 2 \theta)\right.
\left.+2(\omega R)^{2} \cos \theta(c+\omega R \sin \theta) \sin 2 \theta\right\}
=-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{\hat{ z }}{2 R \cos ^{2} \theta(c+\omega R \sin \theta)^{3}}\left[-c^{3} \sin \theta+c^{2} \omega R\left(2 \cos ^{2} \theta-1\right)+c(\omega R)^{2}\left(2 \cos ^{2} \theta+1\right) \sin \theta+(\omega R)^{3}\right]
=-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{2 R \cos ^{2} \theta(1+\beta \sin \theta)^{3}}\left[-\sin \theta+\beta\left(2 \cos ^{2} \theta-1\right)+\beta^{2}\left(2 \cos ^{2} \theta+1\right) \sin \theta+\beta^{3}\right] \hat{ z },
where  \beta \equiv \omega R / c . [Since E and both lie in the xy plane, B =(1 / c) \hat{ᴫ} \times E is along the z direction, × B is radial, and hence the magnetic contribution to the torque is zero.]
The angle θ is determined by the retarded time condition, ᴫ=-c t_{r} \text { (note that } t_{r} is negative, here), and 2θ is the angle through which the dipole rotates in time -t_{r}, \text { so } 2 R \cos \theta=-c t_{r}=c(2 \theta / \omega), \text { or } \theta=\beta \cos \theta .

We can use this to eliminate the trig functions: 

N =-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{\beta}{2 R \theta^{2}\left(1+\sqrt{\beta^{2}-\theta^{2}}\right)^{3}}\left[\left(\beta^{4}-\beta^{2}+2 \theta^{2}\right)+\sqrt{\beta^{2}-\theta^{2}}\left(\beta^{2}+2 \theta^{2}-1\right)\right] \hat{ z }.

Meanwhile, expanding in powers of θ:

\beta=\theta \sec \theta=\theta+\frac{1}{2} \theta^{3}+\frac{5}{24} \theta^{5}+\frac{61}{720} \theta^{7}+\ldots
This can be “solved” (for \theta \text { as a function of } \beta ) by reverting the series:
\theta=\beta-\frac{1}{2} \beta^{3}+\frac{13}{24} \beta^{5}-\frac{541}{720} \beta^{7}+\ldots

Then

\theta^{2}=\beta^{2}\left(1-\beta^{2}+\frac{4}{3} \beta^{4}+\ldots\right), \sqrt{\beta^{2}-\theta^{2}}=\beta^{2}\left(1-\frac{2}{3} \beta^{2}+\frac{4}{5} \beta^{4}+\ldots\right),
\frac{1}{\theta^{2}}=\frac{1}{\beta^{2}}\left(1+\beta^{2}+\ldots\right), \frac{1}{\left(1+\sqrt{\beta^{2}-\theta^{2}}\right)^{3}}=1-3 \beta^{2}+\ldots,
\left[\left(\beta^{4}-\beta^{2}+2 \theta^{2}\right)+\sqrt{\beta^{2}-\theta^{2}}\left(\beta^{2}+2 \theta^{2}-1\right)\right]=\frac{8}{3} \beta^{4}\left(1-\frac{4}{5} \beta^{2}+\ldots\right).

To leading order in \beta, then,

N =-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{\beta}{2 R} \frac{1}{\beta^{2}} \frac{8 \beta^{4}}{3} \hat{ z }=-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{4 \beta^{3}}{3 R} \hat{ z }.

(b) The radiation reaction force on +q is (Eq. 11.80) F =\frac{\mu_{0} q^{2}}{6 \pi c} \dot{ a }  . In this case \dot{ a }=-\omega^{2} v =-\omega^{3} R \hat{ y } , so the net torque (counting both ends) is

F _{ rad }=\frac{\mu_{0} q^{2}}{6 \pi c} \dot{ a }                          (11.80)

N =-2 R \frac{\mu_{0} q^{2}}{6 \pi c} \omega^{3} R \hat{ z }=-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{4 \beta^{3}}{3 R} \hat{ z }.

Adding this to the interaction torque from (a), the total is

N =-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{8 \beta^{3}}{3 R} \hat{ z }=-\frac{\mu_{0} p^{2} \omega^{3}}{6 \pi c} \hat{ z }.
\text { (c) } \ddot{ p }=2 q \ddot{ r }=2 q\left(-\omega^{2}\right) r =-\omega^{2} p , so Eq. 11.60 says the power radiated is P=\frac{\mu_{0}}{6 \pi c} \omega^{4} p^{2}
. The power associated with the torque in (b) is N \omega=-\frac{\mu_{0} p^{2} \omega^{3}}{6 \pi c} \omega , so they are in agreement.
11.21

Related Answered Questions