Question 15.76: A 2.5-in.-diameter solid aluminum post is subjected to a hor...

A 2.5-in.-diameter solid aluminum post is subjected to a horizontal force of V = 9 kips, a vertical force of P = 20 kips, and a concentrated torque of T = 4 kip-ft, acting in the directions shown in Figure P15.76. Assume L = 3.5 in. The yield strength of the aluminum is \sigma_{Y} = 50 ksi, and a minimum factor of safety of FS _{\min } = 1.67 is required by specification. Consider points H and K, and determine whether the aluminum post satisfies the specifications according to:
(a) the maximum-shear-stress theory.
(b) the maximum-distortion-energy theory.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

\begin{array}{ll}A=\frac{\pi}{4}(2.5 \text { in. })^{2}=4.908739 \text { in } .^{2} \quad J=\frac{\pi}{32}(2.5 \text { in. })^{4}=3.834952 \text { in. }{ }^{4} \\Q=\frac{(2.5  in. )^{3}}{12}=1.302083  in .^{3} \quad I_{x}=I_{z}=\frac{\pi}{64}(2.5  in .)^{4}=1.917476  in .{ }^{4}\end{array}

Equivalent forces at H and K:

\begin{array}{lll}F_{x}=-9 \text { kips } & F_{y}=-20 \text { kips } & F_{z}=0 \text { kips } \\M_{x}=0 \text { kip-in. } & M_{y}=48 \text { kip-in. } & M_{z}=(9 \text { kips })(3.5  in .)=31.5 \text { kip-in. }\end{array}

Axial stress magnitude at H due to F _{y}:

\sigma_{y}=\frac{20,000  lb }{4.908739  in. ^{2}}=4,074.367  psi

Shear stress magnitude at H due to F _{x}:

\tau_{x y}=\frac{(9,000  lb )\left(1.302083  in.^{3}\right)}{\left(1.917476  in .^{4}\right)(2.5  in .)}=2,444.620  psi

Torsion shear stress magnitude at H due to M _{y}:

\tau_{x y}=\frac{M_{y} c}{J}=\frac{(48,000  lb – in. )(2.5  in . / 2)}{3.834952  in .^{4}}=15,645.568  psi

Summary of stresses at H:

\begin{aligned}\sigma_{x} &=0  psi \\\sigma_{y} &=-4,074.367  psi \\\tau_{x y} &=-2,444.620  psi +15,645.568  psi \\&=13,200.948  psi\end{aligned}

 

Principal stress calculations for point H:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(0  psi )+(-4,074.367  psi )}{2} \pm \sqrt{\left(\frac{(0  psi )-(-4,074.367  psi )}{2}\right)^{2}+(13,200.948  psi )^{2}} \\&=-2,037.183  psi \pm 13,357.213  psi\end{aligned}

therefore,          \sigma_{p 1}=11.320  ksi              and                  \sigma_{p 2}=-15.394  ksi

Bending stress magnitude at K due to M _{ z }:

\sigma_{y}=\frac{M_{z} x}{I_{z}}=\frac{(31,500  lb – in. )(2.50  in . / 2)}{1.917476  in .^{4}}=20,534.808  psi

Shear stress magnitude at K due to M _{ y }:

\tau_{y z}=\frac{M_{y} c}{J}=\frac{(48,000  lb – in .)(2.5  in . / 2)}{3.834952  in .{ }^{4}}=15,645.568  psi

Summary of stresses at K:

\begin{aligned}&\sigma_{z}=0  psi \\&\sigma_{y}=-4,074.367  psi +20,534.808  psi =16,460.442  psi \\&\tau_{y z}=-15,645.568  psi\end{aligned}

 

Principal stress calculations for point K:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(0  psi )+(16,460.442  psi )}{2} \pm \sqrt{\left(\frac{(0 psi )-(16,460.442  psi )}{2}\right)^{2}+(15,645.568  psi )^{2}} \\&=8,230.221  psi \pm 17,678.245  psi\end{aligned}

therefore,            \sigma_{p 1}=25.908  ksi                     and                         \sigma_{p 2}=-9.448  ksi

 

(a) Maximum-Shear-Stress Theory
Element H:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|11.320  ksi -(-15.394  ksi )|=26.714  ksi

The factor of safety associated with this state of stress is:

FS _{H}=\frac{50  ksi }{26.714  ksi }=1.872

Element K:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|25.908  ksi -(-9.448  ksi )|=35.356  ksi

The factor of safety associated with this state of stress is:

FS _{K}=\frac{50  ksi }{35.356  ksi }=1.414

Since the factor of safety at K is less than the minimum required factor of safety, the aluminum post does not satisfy the specifications.

 

(b) Maximum-Distortion-Energy Theory:
Element H:

\begin{aligned}\sigma_{M, H} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(11.320  ksi )^{2}-(11.320  ksi )(-15.394  ksi )+(-15.394  ksi )^{2}\right]^{1 / 2} \\&=23.225  ksi\end{aligned}

 

FS _{H}=\frac{50  ksi }{23.225  ksi }=2.15

 

Element K:

\begin{aligned}\sigma_{M, K} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(25.908  ksi )^{2}-(25.908  ksi )(-9.448  ksi )+(-9.448  ksi )^{2}\right]^{1 / 2} \\&=31.706  ksi\end{aligned}

 

FS _{K}=\frac{50  ksi }{31.706  ksi }=1.577

 

Since the factor of safety at K is less than the minimum required factor of safety, the aluminum post does not satisfy the specifications.

 

 

 

 

Related Answered Questions