Question 15.77: A steel shaft with an outside diameter of 20 mm is supported...

A steel shaft with an outside diameter of 20 mm is supported in flexible bearings at its ends. Two pulleys are keyed to the shaft, and the pulleys carry belt tensions as shown in Figure P15.77. The yield strength of the steel is \sigma_{Y} = 350 MPa.
(a) Determine the factors of safety predicted at points H and K by the maximum-shearstress theory of failure.
(b) Determine the Mises equivalent stresses at points H and K.
(c) Determine the factors of safety at points H and K predicted by the maximumdistortion-energy theory.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

\begin{array}{ll}A=\frac{\pi}{4}(20  mm )^{2}=314.159  mm ^{2} & J=\frac{\pi}{32}(20  mm )^{4}=15,707.963  mm ^{4} \\Q=\frac{(20  mm )^{3}}{12}=666.667  mm ^{3} & I_{y}=I_{z}=\frac{\pi}{64}(20  mm )^{4}=7,853.982  mm ^{4}\end{array}

 

__________________________________________________________________________________________________

Equilibrium of entire shaft:

\begin{aligned}&\Sigma F_{z}=-A_{z}-D_{z}+300  N +2,100  N +1,100  N +200  N =0 \\&\Sigma M_{A, y \text { axis }}=-(300  N )(150  mm )-(2,100  N )(150  mm ) \\&\quad-(1,100  N )(450  mm )-(200  N )(450  mm )+(600  mm ) D_{z}=0\end{aligned}

therefore

D_{z}=1,575  N \text {   and   } A_{z}=2,125  N

__________________________________________________________________________________________________

__________________________________________________________________________________________________

Detail of equivalent forces at H and K:                                Detail of equivalent moments at H and K:

                                         

\begin{aligned}F_{x} &=0  N \\F_{y} &=0  N \\F_{z} &=1,100  N +200  N -1,575  N \\&=-275  N\end{aligned}                                     \begin{aligned}M_{x}=&(1,100  N )(120  mm )-(200  N )(120  mm ) \\=& 108,000  N – mm \\M_{y}=&(1,575  N )(300  mm )-(1,100  N )(150  mm ) \\&-(200  N )(150  mm )=277,500  N – mm \\M_{z}=& 0  N – mm\end{aligned}

__________________________________________________________________________________________________

Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.

 

Consider point H.
Force F _{z} creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{(275  N )\left(666.667  mm ^{3}\right)}{\left(7,853.982  mm ^{4}\right)(20  mm )}=1.167  MPa

Moment M _{ x }, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{M_{x} c}{J}=\frac{(108,000  N – mm )(20  mm / 2)}{15,707.963  mm ^{4}}=68.755  MPa

Moment M _{ y } does not create bending stress at H because H is located on the neutral axis for bending about the y axis.

Summary of stresses at H:

\begin{aligned}\sigma_{x} &=0  MPa \\\sigma_{z} &=0  MPa \\\tau_{x z} &=-1.167  MPa +68.755  MPa =67.588  MPa\end{aligned}

Principal stress calculations for point H:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(0  MPa )+(0  MPa )}{2} \pm \sqrt{\left(\frac{(0  MPa )-(0  MPa )}{2}\right)^{2}+(-67.588  MPa )^{2}} \\&=0  MPa \pm 67.588  MPa\end{aligned}

therefore,      \sigma_{p 1}=67.588  MPa                           and                                \sigma_{p 2}=-67.588  MPa

 

Consider point K.
Force F _{z} does not cause either a normal stress or a shear stress at K.

Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{M_{x} c}{J}=\frac{(108,000  N – mm )(20  mm / 2)}{15,707.963  mm ^{4}}=68.755  MPa

Moment M _{y} creates bending stress at K. The magnitude of this stress is:

\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{(277,500  N – mm )(20  mm / 2)}{7,853.982  mm ^{4}}=353.324  MPa

Moment M _{z} does not create bending stress at K because K is located on the neutral axis for bending about the z axis.

 

Summary of stresses at K:

\begin{aligned}\sigma_{x} &=353.324  MPa \\\sigma_{y} &=0  MPa \\\tau_{x y} &=-68.755  MPa\end{aligned}

Principal stress calculations for point K:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(353.324  MPa )+(0  MPa )}{2} \pm \sqrt{\left(\frac{(353.324  MPa )-(0  MPa )}{2}\right)^{2}+(-68.755  MPa )^{2}} \\&=176.662  MPa \pm 189.570  MPa\end{aligned}

therefore,                 \sigma_{p 1}=366.232  MPa                          and                              \sigma_{p 2}=-12.908  MPa

 

(a) Maximum-Shear-Stress Theory
Element H:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|67.588  MPa -(-67.588  MPa )|=135.176  MPa

The factor of safety associated with this state of stress is:

FS _{H}=\frac{350  MPa }{135.176  MPa }=2.59

Element K:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|366.232  MPa -(-12.908  MPa )|=379.140  MPa

The factor of safety associated with this state of stress is:

FS _{K}=\frac{350  MPa }{379.140  MPa }=0.923

 

(b) Mises equivalent stresses at points H and K:
Element H:

\begin{aligned}\sigma_{M, H} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(67.588  MPa )^{2}-(67.588  MPa )(-67.588  MPa )+(-67.588  MPa )^{2}\right]^{1 / 2} \\&=117.066  MPa =117.1  MPa\end{aligned}

Element K:

\begin{aligned}\sigma_{M, K} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(366.232  MPa )^{2}-(366.232  MPa )(-12.908  MPa )+(-12.908  MPa )^{2}\right]^{1 / 2} \\&=372.853  MPa =373  MPa\end{aligned}

 

(c) Maximum-Distortion-Energy Theory:
Element H:

FS _{H}=\frac{350  MPa }{117.066  MPa }=2.99

Element K:

FS _{K}=\frac{350  MPa }{372.853  MPa }=0.939

 

 

 

 

 

 

Related Answered Questions