Question 15.80: An aluminum alloy is to be used for a driveshaft that transm...

An aluminum alloy is to be used for a driveshaft that transmits 40 hp at 800 rpm. The yield strength of the aluminum alloy is \sigma_{Y} = 37 ksi. If a factor of safety of FS = 3.0 with respect to yielding is required, determine the smallest-diameter shaft that can be selected based on:
(a) the maximum-shear-stress theory.
(b) the maximum-distortion-energy theory.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The torque in the driveshaft is:

T=\frac{P}{\omega}=\frac{(40  hp )\left(\frac{550  lb – ft / s }{1  hp }\right)}{\left(\frac{800  rev }{\min }\right)\left(\frac{2 \pi  rad }{1  rev }\right)\left(\frac{1  min }{60  s }\right)}=262.606  lb – ft

 

(a) Maximum-Shear-Stress Theory
For a shaft subjected to pure torsion only, the principal stresses will be equal in magnitude to the torsional shear stress. The principal stress \sigma_{p 1} will be positive and \sigma_{p 2} will be negative. Failure will occur when \left|\sigma_{p 1}-\sigma_{p 2}\right| \geq \sigma_{Y} , therefore:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=\left|\tau_{\text {torsion }}-\left(-\tau_{\text {torsion }}\right)\right|=2 \tau_{\text {torsion }} \leq \sigma_{\text {allow }}

The allowable stress for the aluminum alloy is:

\sigma_{\text {allow }}=\frac{\sigma_{Y}}{ FS }=\frac{37  ksi }{3}=12.33333  ksi

Therefore, the torsion shear stress cannot exceed:

\begin{aligned}&2 \tau_{\text {torsion }}=12.33333  ksi \\&\therefore \tau_{\text {allow }}=\frac{12.33333  ksi }{2}=6.16667  ksi\end{aligned}

The minimum diameter required for the shaft can be found from:

\begin{gathered}\frac{\pi}{16} d^{3} \geq \frac{T}{\tau_{\text {allow }}}=\frac{(262.606  lb – ft )(12  in. / ft )}{6,166.667  psi }=0.51102  in .^{3} \\\therefore d \geq 1.375524  in .=1.376  in.\end{gathered}

 

(b) Maximum-Distortion-Energy Theory: For pure torsion,

\sigma_{p 1}=\tau_{\text {torsion }} \quad \text { and } \quad \sigma_{p 2}=-\tau_{\text {torsion }}

For a state of plane stress, the Mises equivalent stress can be expressed as:

\begin{aligned}\sigma_{M} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[\left(\tau_{\text {torsion }}\right)^{2}-\left(\tau_{\text {torsion }}\right)\left(-\tau_{\text {torsion }}\right)+\left(-\tau_{\text {torsion }}\right)^{2}\right]^{1 / 2} \\&=\left[3 \tau_{\text {torsion }}^{2}\right]^{1 / 2}\end{aligned}

Set the Mises equivalent stress equal to the allowable stress for the aluminum alloy:

\left[3 \tau_{\text {torsion }}^{2}\right]^{1 / 2}=\frac{37  ksi }{3}=12.33333  ksi

and solve for the allowable torsional shear stress:

\tau_{\text {torsion }}=\sqrt{\frac{(12.33333  ksi )^{2}}{3}}=7.12065  ksi

Thus, the minimum diameter required to satisfy the maximum-distortion-energy theory is:

\begin{aligned}\frac{\pi}{16} d^{3} & \geq \frac{T}{\tau_{\text {allow }}}=\frac{(262.606  lb – ft )(12  in . / ft )}{7,120.65  psi }=0.44255  in .^{3} \\& \therefore d \geq 1.311128  in .=1.311  in .\end{aligned}

 

Related Answered Questions