Question 15.81: An aluminum alloy is to be used for a driveshaft that transm...

An aluminum alloy is to be used for a driveshaft that transmits 22 kW at 4 Hz. The yield strength of the aluminum alloy is \sigma_{Y} = 255 MPa. If a factor of safety of FS = 3.0 with respect to yielding is required, determine the smallest-diameter shaft that can be selected based on:
(a) the maximum-shear-stress theory.
(b) the maximum-distortion-energy theory.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The torque in the driveshaft is:

T=\frac{P}{\omega}=\frac{(22  kW )\left(\frac{1,000  N – m / s }{1  kW }\right)}{\left(\frac{4  rev }{ s }\right)\left(\frac{2 \pi  rad }{1  rev }\right)}=875.352  N – m

 

(a) Maximum-Shear-Stress Theory
For a shaft subjected to pure torsion only, the principal stresses will be equal in magnitude to the torsional shear stress. The principal stress \sigma_{p 1} will be positive and \sigma_{p 2} will be negative. Failure will occur when \left|\sigma_{p 1}-\sigma_{p 2}\right| \geq \sigma_{Y} , therefore:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=\left|\tau_{\text {torsion }}-\left(-\tau_{\text {torsion }}\right)\right|=2 \tau_{\text {torsion }} \leq \sigma_{\text {allow }}

The allowable stress for the aluminum alloy is:

\sigma_{\text {allow }}=\frac{\sigma_{Y}}{F S}=\frac{255  MPa }{3}=85  MPa

Therefore, the torsion shear stress cannot exceed:

\begin{aligned}&2 \tau_{\text {torsion }}=85  MPa \\&\therefore \tau_{\text {allow }}=\frac{85  MPa }{2}=42.5  MPa\end{aligned}

The minimum diameter required for the shaft can be found from:

\begin{aligned}\frac{\pi}{16} d^{3} & \geq \frac{T}{\tau_{\text {allow }}}=\frac{(875.352  N – m )(1,000  mm / m )}{42.5  N / mm ^{2}}=20,596.518  mm ^{3} \\& \therefore d \geq 47.161542  mm =47.2  mm\end{aligned}

 

(b) Maximum-Distortion-Energy Theory: For pure torsion,

\sigma_{p 1}=\tau_{\text {torsion }} \quad \text { and } \quad \sigma_{p 2}=-\tau_{\text {torsion }}

For a state of plane stress, the Mises equivalent stress can be expressed as:

\begin{aligned}\sigma_{M} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[\left(\tau_{\text {torsion }}\right)^{2}-\left(\tau_{\text {torsion }}\right)\left(-\tau_{\text {torsion }}\right)+\left(-\tau_{\text {torsion }}\right)^{2}\right]^{1 / 2} \\&=\left[3 \tau_{\text {torsion }}^{2}\right]^{1 / 2}\end{aligned}

Set the Mises equivalent stress equal to the allowable stress for the aluminum alloy:

\left[3 \tau_{\text {torsion }}^{2}\right]^{1 / 2}=\frac{255  MPa }{3}=85  MPa

and solve for the allowable torsional shear stress:

\tau_{\text {torsion }}=\sqrt{\frac{(85  MPa )^{2}}{3}}=49.07477  MPa

Thus, the minimum diameter required to satisfy the maximum-distortion-energy theory is:

\begin{aligned}\frac{\pi}{16} d^{3} & \geq \frac{T}{\tau_{\text {allow }}}=\frac{(875.352  N – m )(1,000  mm / m )}{49.07477  N / mm ^{2}}=17,837.109  mm ^{3} \\& \therefore d \geq 44.953641  mm =45.0  mm\end{aligned}

 

 

Related Answered Questions