Question 6.8: Determine the effective extensional and flexural moduli, the...

Determine the effective extensional and flexural moduli, thermal expansion coefficients, and moisture expansion coefficients for a [30/0/90]_s graphite–epoxy laminate. Use material properties listed for graphite–epoxy in Table 3.1, and assume each ply has a thickness of 0.125 mm.

TABLE 3.1
Typical Properties of Common Unidirectional Composites

Property Glass/ Epoxy Kevlar/ Epoxy Graphite/ Epoxy
E_{11} 55 GPa 100 GPa 170 GPa
(8.0 Msi) (15 Msi) (25 Msi)
E_{22} 16 GPa 6 GPa 10 GPa
(2.3 Msi) (0.90 Msi) (1.5 Msi)
ν_{12} 0.28 0.33 0.3
G_{12} 7.6 GPa 2.1 GPa 13 GPa
(1.1 Msi) (0.30 Msi) (1.9 Msi)
 \sigma _{11}^{fT} 1050 MPa 1380 MPa 1500 MPa
(150 ksi) (200 ksi) (218 ksi)
\sigma _{11}^{fC} 690 MPa 280 MPa 1200 MPa
(100 ksi) (40 ksi) (175 ksi)
\sigma _{22}^{fT} 45 MPa 35 MPa 50 MPa
(5.8 ksi) (2.9 ksi) (7.25 ksi)
\sigma _{22}^{fC} 120 MPa 105 MPa 100 MPa
(16 ksi) (15 ksi) (14.5 ksi)
\tau ^f_{22} 40 MPa 40 MPa 90 MPa
(4.4 ksi) (4.0 ksi) (13.1 ksi)
\alpha _{11} 6.7 μm/m−°C −3.6 μm/m−°C −0.9 μm/m−°C
(3.7 μin./in.\boxtimes  °F) (−2.0 μin./in.−°F) (−0.5 μin./in.−°F)
\alpha _{22} 25 μm/m−°C 58 μm/m−°C 27 μm/m−°C
(14 μin./in.−°F) (32 μin./in.−°F) (15 μin./in.−°F)
\beta _{11} 100 μm/m−%M 175 μm/m−%M 50 μm/m−%M
(100 μin./in.−%M) (175 μin./in.−%M) (50 μin./in.−%M)
\beta _{22} 1200 μm/m−%M 1700 μm/m−%M 1200 μm/m−%M
(1200 μin./in.−%M) (1700 μin./in.−%M) (1200 μin./in.−%M)
Ply 0.125 mm 0.125 mm 0.125 mm
Thickness (0.005 in.) (0.005 in.) (0.005 in.)
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

As described in this section, effective moduli are calculated using various elements of the [abd] matrix. A six-ply symmetric laminate is considered in this problem. The total laminate thickness is t = 6(0.000125 m) = 0.000750 m. Using methods discussed in Section 6.6, the [ABD] matrix is determined to be

[ABD]=\left [ \begin{matrix} 72.2\times 10^6& 8.02\times 10^6 & 12.0\times 10^6 & 0 & 0 & 0 \\8.02\times 10^6 & 52.0\times 10^6 & 5.38\times 10^6 & 0& 0 & 0 \\12.0\times 10^6 & 5.38\times 10^6& 15.5\times 10^6 & 0& 0 & 0 \\ 0& 0 & 0&  4.23 &0.676 & 1.19 \\ 0 & 0 &0 &0.676 & 0.988 & 0.532 \\ 0 & 0& 0 & 1.19 & 0.532 & 1.03 \end{matrix} \right ]

Since the laminate is symmetric, all elements of the B_{ij} matrix are zero, as expected. We obtain the [abd] by inverting the [ABD] numerically:

[abd]=\left [ \begin{matrix} 16.0\times 10^{-9}& 1.23\times 10^{-9} & -12.0\times 10^{-9} & 0 & 0 & 0 \\-1.23\times 10^{-9} & 20.0\times 10^{-9} & -6.0\times 10^{-9} & 0& 0 & 0 \\-12.0\times 10^{-9} & -6.0\times 10^{-9}& 75.8\times 10^{-9} & 0& 0 & 0 \\ 0& 0 & 0& 3.51\times 10^{-1} &-2.92\times 10^{-2} & -3.92\times 10^{-1} \\ 0 & 0 &0 &-2.92\times 10^{-2} & 1.408 & -6.96\times 10^{-1} \\ 0 & 0& 0 & -3.92\times 10^{-1} &-6.96\times 10^{-1} & 1.79 \end{matrix} \right ]

The effective extensional modulii of the laminate can now be calculated using Equations 6.63 through 6.70:

\overline{E}_{xx}^{ex}=\frac{\overline{\sigma } _{xx}}{\varepsilon^o_{xx}} = \frac{(N_{xx}/t)}{(a_{11}N_{xx})} = \frac{1}{ta_{11}}                    (6.63)

\overline{\eta }_{xy,xx}=\frac{\varepsilon ^o _{xx}}{\gamma ^o_{xx}} = \frac{a_{16} N_{xx}}{a_{66}N_{xy}} = \frac{a_{16}}{a_{66}}                                       (6.70a)

\overline{\eta }_{xy,yy}=\frac{\varepsilon ^o _{yy}}{\gamma ^o_{xy}} = \frac{a_{26}}{a_{66}}                                        (6.70b)

\overline{E}_{xx}^{ex}=\frac{1}{ta_{11}}=\frac{1}{(0.000750)(16.0\times 10^{-9})}=83.3GPa

 

\overline{E}_{xx}^{ex}=\frac{1}{ta_{22}}=\frac{1}{(0.000750)(20\times 10^{-9})}=66.7GPa

 

\overline{G} _{xy}=\frac{1}{ta_{66}}=\frac{1}{(0.000750)(75.8\times 10^{-9})}=17.6GPa

 

\overline{\nu} _{xy}^{ex}=\frac{-a_{12}}{a_{11}} =\frac{-(-123\times 10^{-9})}{16.0\times 10^{-9}} =0.077

 

\overline{\nu}_{xy}^{ex}=\frac{-a_{12}}{a_{22}} =\frac{-(1.23\times 10^{-9})}{20\times 10^{-9}} =0.061

 

\overline{\eta }_{xx,xy}^{ex}=\frac{a_{16}}{a_{11}} =\frac{-12\times 10^{-9}}{16\times 10^{-9}} =-0.75

 

\overline{\eta }_{yy,xy}^{ex}=\frac{a_{26}}{a_{22}} =\frac{-6.0\times 10^{-9}}{20\times 10^{-9}} =-0.30

 

\overline{\eta }_{xy,xx}^{ex}=\frac{a_{16}}{a_{66}} =\frac{-12.0\times 10^{-9}}{75.8\times 10^{-9}} =-0.16

 

\overline{\eta }_{xy,yy}^{ex}=\frac{a_{26}}{a_{66}} =\frac{-6.0\times 10^{-9}}{75.8\times 10^{-9}} =-0.079

 

Effective flexural properties are found to be

\overline{E}_{xx}^{fl}=\frac{12}{d_{11}t^3} =\frac{12}{(0.351)(0.000750)^3} =81.0  GPa

 

\overline{E}_{yy}^{fl}=\frac{12}{d_{22}t^3} =\frac{12}{(1.408)(0.000750)^3} =20.2  GPa

 

\overline{\nu} _{xy}^{fl}=\frac{-d_{12}}{d_{11}} =\frac{2.92\times 10^{-2}}{0.351} =0.083

 

\overline{\nu} _{yx}^{fl}=\frac{-d_{12}}{d_{22}} =\frac{2.92\times 10^{-2}}{1.408} =0.021

 

\overline{\eta }_{xx,xy}^{fl}=\frac{d_{16}}{d_{11}} =\frac{-0.392}{0.351} =-1.12

 

\overline{\eta }_{yy,xy}^{fl}=\frac{d_{26}}{d_{22}} =\frac{-0.696}{1.408} =-0.49

 

Note that the values of extensional properties are quite different from analogous flexural properties.

The thermal stress resultants associated with a given change in temperature must be determined in order to calculate the effective thermal expansion coefficients. Numerically speaking, any change in temperature can be used, but for present purposes a unit change in temperature will be assumed (i.e., ΔT = 1). Using Equations 6.41, the thermal stress resultants associated with ΔT = 1 are

N_{xx}^T\equiv \Delta T\sum\limits_{k=1}^{n}{\left\{\left[\overline{Q}_{11} \alpha _{xx} +\overline{Q}_{12} \alpha _{yy}+\overline{Q}_{16} \alpha _{xy}\right] _{k}\left[z_{k}-z_{k-1}\right] \right\} }                       (6.41a)

N_{yy}^T\equiv \Delta T\sum\limits_{k=1}^{n}{\left\{\left[\overline{Q}_{12} \alpha _{xx} +\overline{Q}_{22} \alpha _{yy}+\overline{Q}_{26} \alpha _{xy}\right] _{k}\left[z_{k}-z_{k-1}\right] \right\} }                       (6.41b)

N_{xy}^T\equiv \Delta T\sum\limits_{k=1}^{n}{\left\{\left[\overline{Q}_{16} \alpha _{xx} +\overline{Q}_{26} \alpha _{yy}+\overline{Q}_{66} \alpha _{xy}\right] _{k}\left[z_{k}-z_{k-1}\right] \right\} }                       (6.41c)

M_{xx}^T\equiv \frac{\Delta T}{2} \sum\limits_{k=1}^{n}{\left\{\left[\overline{Q}_{11} \alpha _{xx} +\overline{Q}_{12} \alpha _{yy}+\overline{Q}_{16} \alpha _{xy}\right] _{k}\left[z^2_{k}-z^2_{k-1}\right] \right\} }                       (6.41d)

M_{yy}^T\equiv \frac{\Delta T}{2} \sum\limits_{k=1}^{n}{\left\{\left[\overline{Q}_{12} \alpha _{xx} +\overline{Q}_{22} \alpha _{yy}+\overline{Q}_{26} \alpha _{xy}\right] _{k}\left[z^2_{k}-z^2_{k-1}\right] \right\} }                       (6.41e)

M_{xy}^T\equiv \frac{\Delta T}{2} \sum\limits_{k=1}^{n}{\left\{\left[\overline{Q}_{16} \alpha _{xx} +\overline{Q}_{26} \alpha _{yy}+\overline{Q}_{66} \alpha _{xy}\right] _{k}\left[z^2_{k}-z^2_{k-1}\right] \right\} }                       (6.41f)

N_{xx}^T|_{\Delta T=1}=52.3N/m N_{yy}^T|_{\Delta T=1}=94.9N/m

 

N_{xy}^T|_{\Delta T=1}=36.9N/m

The effective thermal expansion coefficient \overline{\alpha }_{xx} can now be calculated in accordance with Equation 6.73a:

\overline{\alpha }_{xx}=\frac{1}{\Delta T}\left[a_{11}N_{xx}^T+a_{12}N_{yy}^T+a_{16}N_{xy}^T\right]

 

\overline{\alpha }_{yy}=\frac{1}{\Delta T}\left[a_{12}N_{xx}^T+a_{22}N_{yy}^T+a_{26}N_{xy}^T\right]

 

\overline{\alpha }_{xy}=\frac{1}{\Delta T}\left[a_{16}N_{xx}^T+a_{26}N_{yy}^T+a_{66}N_{xy}^T\right]                 (6.73a)

\overline{\alpha }_{xx}=\frac{1}{(1)}\left[16.0\times 10^{-9}(52.3)-1.23\times (94.9)\times 10^{-9} – 12.0\times 10^{-9}\times (-36.9)\right]

 

\overline{\alpha }_{xx}=1.16 μrad/m−° C

 

Using an equivalent procedure:

\overline{\alpha }_{yy}=2.06 μm/m−° C

 

\overline{\alpha }_{xy}=-4.00 μm/m−° C

 

Finally, moisture stress resultants associated with a given change in moisture content must be determined in order to calculate the effective moisture expansion coefficients. Numerically speaking, any change moisture content can be used, but for present purposes a unit change in content will be assumed (i.e., ΔM = 1). Using Equations 6.42, the moisture stress resultants associated with ΔM = 1 are

N_{xx}^M|_{\Delta M=1}=32800 N/m

 

N_{yy}^M|_{\Delta M=1}=33800 N/m           N_{xy}^M|_{\Delta M=1}=-930N/m

 

Applying Equations 6.76a, we find

\overline{\beta }_{xx}=\frac{1}{\Delta M}\left[a_{11}N_{xx}^M + a_{12}N_{yy}^M + a_{16}N_{xy}^M\right]

 

\overline{\beta }_{yy}=\frac{1}{\Delta M}\left[a_{12}N_{xx}^M + a_{22}N_{yy}^M + a_{26}N_{xy}^M\right]

 

\overline{\beta }_{xy}=\frac{1}{\Delta M}\left[a_{16}N_{xx}^M + a_{26}N_{yy}^M + a_{66}N_{xy}^M\right]                                 (6.76a)

\overline{\beta }_{xx}=494μm/m −\%M

 

\overline{\beta }_{yy}=643μm/m −\%M           \overline{\beta }_{xy}=-667μrad/\%M

Related Answered Questions