Question 11.29: Use the duality transformation (Prob. 7.64) to construct the...

Use the duality transformation (Prob. 7.64) to construct the electric and magnetic fields of a magnetic monopole q_{m} in arbitrary motion, and find the “Larmor formula” for the power radiated ^{23}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { With } \alpha=90^{\circ}, \text { Eq. } 7.68 \text { gives } E ^{\prime}=c B , B ^{\prime}=-\frac{1}{c} E , q_{m}^{\prime}=-c q_{6} . Use this to “translate” Eqs. 10.72, 10.73,

E ( r , t)=\frac{q}{4 \pi \epsilon_{0}} \frac{ᴫ}{( ᴫ \cdot u )^{3}}\left[\left(c^{2}-v^{2}\right) u + ᴫ \times( u \times a )\right]                                (10.72)

B ( r , t)=\frac{1}{c} \hat{ᴫ} \times E ( r , t)                       (10.73)

and 11.70:

P=\frac{\mu_{0} q^{2} a^{2}}{6 \pi c}                              (11.70)

E ^{\prime}=c\left(\frac{1}{c} \hat{ᴫ} \times E \right)=\hat{ ᴫ } \times\left(-c B ^{\prime}\right)=-c\left(\hat{ᴫ} \times B ^{\prime}\right).

B ^{\prime}=-\frac{ᴫ}{c} E =-\frac{1}{c} \frac{q_{e}}{4 \pi \epsilon_{0}} \frac{ᴫ}{( ᴫ \cdot u )^{3}}\left[\left(c^{2}-v^{2}\right) u + ᴫ \times( u \times a )\right]

 

=-\frac{1}{c} \frac{\left(-q_{m}^{\prime} / c\right)}{4 \pi \epsilon_{0}} \frac{ᴫ}{( ᴫ \cdot u )^{3}}\left[\left(c^{2}-v^{2}\right) u + ᴫ \times( u \times a )\right]=\frac{\mu_{0} q_{m}^{\prime}}{4 \pi} \frac{ᴫ}{( ᴫ \cdot u )^{3}}\left[\left(c^{2}-v^{2}\right) u + ᴫ \times( u \times a )\right].

P=\frac{\mu_{0} a^{2}}{6 \pi c} q_{e}^{2}=\frac{\mu_{0} a^{2}}{6 \pi c}\left(-\frac{1}{c} q_{m}^{\prime}\right)^{2}=\frac{\mu_{0} a^{2}}{6 \pi c^{3}}\left(q_{m}^{\prime}\right)^{2}.

Or, dropping the primes,

B ( r , t)=\frac{\mu_{0} q_{m}}{4 \pi} \frac{ᴫ}{( ᴫ \cdot u )^{3}}\left[\left(c^{2}-v^{2}\right) u + ᴫ \times( u \times a )\right].

E ( r , t)=-c(\hat{ ᴫ } \times B ).

P=\frac{\mu_{0} q_{m}^{2} a^{2}}{6 \pi c^{3}}.

Related Answered Questions