Question 11.32: A charged particle, traveling in from −∞ along the x axis, ...

A charged particle, traveling in from -∞ along the x axis, encoun ters a rectangular potential energy barrier

U(x)= \begin{cases}U_{0}, & \text { if } 0<x<L \\ 0, & \text { otherwise }\end{cases}

Show that, because of the radiation reaction, it is possible for the particle to tunnel through the barrier—that is, even if the incident kinetic energy is less than U_{0}, the particle can pass through .^{26} [Hint: Your task is to solve the equatio

a=\tau \dot{a}+\frac{F}{m},

subject to the force

F(x)=U_{0}[-\delta(x)+\delta(x-L)].

Refer to Probs. 11.19 and 11.31, but notice that this time the force is a specified function of x, not t. There are three regions to consider: (i) x < 0, (ii) 0 < x < L, (iii) x > L. Find the general solution for a(t), v(t), and x(t) in each region, exclude the runaway in region (iii), and impose the appropriate boundary conditions at x = 0 and x = L. Show that the final velocity (v_{f} ) is related to the time T spent traversing the barrier by the equation

L=v_{f} T-\frac{U_{0}}{m v_{f}}\left(\tau e^{-T / \tau}+T-\tau\right),

and the initial velocity (at x = -∞) is

v_{i}=v_{f}-\frac{U_{0}}{m v_{f}}\left[1-\frac{1}{1+\frac{U_{0}}{m v_{f}^{2}}\left(e^{-T / \tau}-1\right)}\right].

To simplify these results (since all we’re looking for is a specific example), suppose the final kinetic energy is half the barrier height. Show that in this case

v_{i}=\frac{v_{f}}{1-\left(L / v_{f} \tau\right)}.

In particular, if you choose L=v_{f} \tau / 4, \text { then } v_{i}=(4 / 3) v_{f} , the initial kinetic energy is (8/9)U_{0}, and the particle makes it through, even though it didn’t have sufficient energy to get over the barrier!] 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Our task is to solve the equation a=\tau \dot{a}+\frac{U_{0}}{m}[-\delta(x)+\delta(x-L)] , subject to the boundary conditions

(1) x continuous at x = 0 and x = L;

(2) v continuous at x = 0 and x = L;

(3) \left.\Delta a=\pm U_{0} / m \tau v \text { (plus at } x=0, \text { minus at } x=L\right).

The third of these follows from integrating the equation of motion:

\int \frac{d v}{d t} d t=\tau \int \frac{d a}{d t} d t+\frac{U_{0}}{m} \int[-\delta(x)+\delta(x-L)] d t,

\Delta v=\tau \Delta a+\frac{U_{0}}{m} \int[-\delta(x)+\delta(x-L)] \frac{d t}{d x} d x=0,

\Delta a==\frac{U_{0}}{m \tau} \int \frac{1}{v}[-\delta(x)+\delta(x-L)] d x=\pm \frac{U_{0}}{m \tau v}.

In each of the three regions the force is zero (it acts only at x = 0 and x = L), and the general solution is

a(t)=A e^{t / \tau} ; \quad v(t)=A \tau e^{t / \tau}+B ; \quad x(t)=A \tau^{2} e^{t / \tau}+B t+C.

(I’ll put subscripts on the constants A, B, and C, to distinguish the three regions.)

Region iii (x > L): To avoid the runaway we pick A_{3}=0 ; \text { then } a(t)=0, v(t)=B_{3}, x(t)=B_{3} t+C_{3} . Let the final velocity be v_{f}\left(=B_{3}\right) , set the clock so that t = 0 when the particle is at x = 0, and let T be the time it takes to traverse the barrier, so x(T)=L=v_{f} T+C_{3}, \text { and hence } C_{3}=L-v_{f} T . Then

a(t)=0 ; \quad v(t)=v_{f}, \quad x(t)=L+v_{f}(t-T), \quad(t<T) .

Region ii (0<x<L): a=A_{2} e^{t / \tau}, v=A_{2} \tau e^{t / \tau}+B_{2}, x=A_{2} \tau^{2} e^{t / \tau}+B_{2} t+C_{2}.

(3) \Rightarrow 0-A_{2} e^{T / \tau}=-\frac{U_{0}}{m \tau v_{f}} \Rightarrow A_{2}=\frac{U_{0}}{m \tau v_{f}} e^{-T / \tau}.

(2) \Rightarrow v_{f}=A_{2} \tau e^{T / \tau}+B_{2}=\frac{U_{0}}{m v_{f}}+B_{2} \Rightarrow B_{2}=v_{f}-\frac{U_{0}}{m v_{f}}.

(1) \Rightarrow L=A_{2} \tau^{2} e^{T / \tau}+B_{2} T+C_{2}=\frac{U_{0} \tau}{m v_{f}}+v_{f} T-\frac{U_{0} T}{m v_{f}}+C_{2}=v_{f} T+\frac{U_{0}}{m v_{f}}(\tau-T)+C_{2} \Rightarrow

C_{2}=L-v_{f} T+\frac{U_{0}}{m v_{f}}(T-\tau).

\begin{aligned}&a(t)=\frac{U_{0}}{m \tau v_{f}} e^{(t-T) / \tau} \\&v(t)=v_{f}+\frac{U_{0}}{m v_{f}}\left[e^{(t-T) / \tau}-1\right] ; \\&x(t)=L+v_{f}(t-T)+\frac{U_{0}}{m v_{f}}\left[\tau e^{(t-T) / \tau}-t+T-\tau\right] ;\end{aligned}        (0 < t < T).

[Note: if the barrier is su!ciently wide (or high) the particle may turn around before reaching L, but we’re interested here in the r´egime where it does tunnel through.]

In particular, for t = 0 (when x = 0):

0=L-v_{f} T+\frac{U_{0}}{m v_{f}}\left[\tau e^{-T / \tau}+T-\tau\right] \Rightarrow L=v_{f} T-\frac{U_{0}}{m v_{f}}\left[\tau e^{-T / \tau}+T-\tau\right] . qed

Region i (x<0): a=A_{1} e^{t / \tau}, v=A_{1} \tau e^{t / \tau}+B_{1}, x=A_{1} \tau^{2} e^{t / \tau}+B_{1} t+C_{1} . \text { Let } v_{i} be the incident velocity (\text { at } t \rightarrow-\infty) \text {; then } B_{1}=v_{i} . Condition (3) says

\frac{U_{0}}{m \tau v_{f}} e^{-T / \tau}-A_{1}=\frac{U_{0}}{m \tau v_{0}},

where v0 is the speed of the particle as it passes x = 0. From the solution in region (ii) it follows that v_{0}=v_{f}+\frac{U_{0}}{m v_{f}}\left(e^{-T / \tau}-1\right) . But we can also express it in terms of the solution in region (i): v_{0}=A_{1} \tau+v_{i}.

Therefore

v_{i}=v_{f}+\frac{U_{0}}{m v_{f}}\left(e^{-T / \tau}-1\right)-A_{1} \tau=v_{f}+\frac{U_{0}}{m v_{f}}\left(e^{-T / \tau}-1\right)+\frac{U_{0}}{m v_{0}}-\frac{U_{0}}{m v_{f}} e^{-T / \tau}

 

=v_{f}-\frac{U_{0}}{m v_{f}}+\frac{U_{0}}{m v_{0}}=v_{f}-\frac{U_{0}}{m v_{f}}\left(1-\frac{v_{f}}{v_{0}}\right)=v_{f}-\frac{U_{0}}{m v_{f}}\left\{1-\frac{v_{f}}{v_{f}+\left(U_{0} / m v_{f}\right)\left[e^{-T / \tau}-1\right]}\right\}

 

=v_{f}-\frac{U_{0}}{m v_{f}}\left\{1-\frac{1}{1+\left(U_{0} / m v_{f}^{2}\right)\left[e^{-T / \tau}-1\right]}\right\}.   qed

\text { If } \frac{1}{2} m v_{f}^{2}=\frac{1}{2} U_{0} , then

L=v_{f} T-v_{f}\left[\tau e^{-T / \tau}+T-\tau\right]=v_{f}\left[T-\tau e^{-T / \tau}-T+\tau\right]=\tau v_{f}\left(1-e^{-T / \tau}\right);

v_{i}=v_{f}-v_{f}\left[1-\frac{1}{1+e^{-T / \tau}-1}\right]=v_{f}\left(1-1+e^{T / \tau}\right)=v_{f} e^{T / \tau}.

Putting these together,

\frac{L}{\tau v_{f}}=1-e^{-T / \tau} \Rightarrow e^{-T / \tau}=1-\frac{L}{\tau v_{f}} \Rightarrow e^{T / \tau}=\frac{1}{1-\left(L / \tau v_{f}\right)} \Rightarrow v_{i}=\frac{v_{f}}{1-\left(L / v_{f} \tau\right)} . qed

In particular, for

L=v_{f} \tau / 4, v_{i}=\frac{v_{f}}{1-1 / 4}=\frac{4}{3} v_{f}, \text { so } \frac{K E_{i}}{K E_{f}}=\frac{\frac{1}{2} m v_{i}^{2}}{\frac{1}{2} m v_{f}^{2}}=\left(\frac{v_{i}}{v_{f}}\right)^{2}=\frac{16}{9} \Rightarrow

 

K E_{i}=\frac{16}{9} K E_{f}=\frac{16}{9} \frac{1}{2} U_{0}=\frac{8}{9} U_{0}.

Related Answered Questions