Question 11.34: (a) Does a particle in hyperbolic motion (Eq. 10.52) radiate...

(a) Does a particle in hyperbolic motion (Eq. 10.52) radiate? (Use the exact formula (Eq. 11.75) to calculate the power radiated.)

w (t)=\sqrt{b^{2}+(c t)^{2}} \hat{ x } \quad(-\infty<t<\infty)                     (10.52)

P=\frac{\mu_{0} q^{2} a^{2} \gamma^{6}}{6 \pi c}                               (11.75)

(b) Does a particle in hyperbolic motion experience a radiation reaction? (Use the exact formula (Prob. 11.33) to determine the reaction force.)

[Comment: These famous questions carry important implications for the principle of equivalenc\text { e }^{27}].

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { (a) } P=\frac{\mu_{0} q^{2} a^{2} \gamma^{6}}{6 \pi c} \text { (Eq. 11.75). } \quad w=\sqrt{b^{2}+c^{2} t^{2}}(\text { Eq. } 10.52) ; v=\dot{w}=\frac{c^{2} t}{\sqrt{b^{2}+c^{2} t^{2}}};

a=\dot{v}=\frac{c^{2}}{\sqrt{b^{2}+c^{2} t^{2}}}-\frac{c^{2} t\left(c^{2} t\right)}{\left(b^{2}+c^{2} t^{2}\right)^{3 / 2}}=\frac{c^{2}}{\left(b^{2}+c^{2} t^{2}\right)^{3 / 2}}\left(b^{2}+c^{2} t^{2}-c^{2} t^{2}\right)=\frac{b^{2} c^{2}}{\left(b^{2}+c^{2} t^{2}\right)^{3 / 2}};

\gamma^{2}=\frac{1}{1-v^{2} / c^{2}}=\frac{1}{1-\left[c^{2} t^{2} /\left(b^{2}+c^{2} t^{2}\right)\right]}=\frac{b^{2}+c^{2} t^{2}}{b^{2}+c^{2} t^{2}-c^{2} t^{2}}=\frac{1}{b^{2}}\left(b^{2}+c^{2} t^{2}\right) . So

P=\frac{\mu_{0} q^{2}}{6 \pi c} \frac{b^{4} c^{4}}{\left(b^{2}+c^{2} t^{2}\right)^{3}} \frac{\left(b^{2}+c^{2} t^{2}\right)^{3}}{b^{6}}=\frac{q^{2} c}{6 \pi \epsilon_{0} b^{2}} . Yes, it radiates (in fact, at a constant rate).

\text { (b) } F_{ rad }=\frac{\mu_{0} q^{2} \gamma^{4}}{6 \pi c}\left(\dot{a}+\frac{3 \gamma^{2} a^{2} v}{c^{2}}\right) ; \quad \dot{a}=-\frac{3}{2} \frac{b^{2} c^{2}\left(2 c^{2} t\right)}{\left(b^{2}+c^{2} t^{2}\right)^{5 / 2}}=-\frac{3 b^{2} c^{4} t}{\left(b^{2}+c^{2} t^{2}\right)^{5 / 2}} ; \quad\left(\dot{a}+\frac{3 \gamma^{2} a^{2} v}{c^{2}}\right)=

 

-\frac{3 b^{2} c^{4} t}{\left(b^{2}+c^{2} t^{2}\right)^{5 / 2}}+\frac{3}{c^{2}} \frac{\left(b^{2}+c^{2} t^{2}\right)}{b^{2}} \frac{b^{4} c^{4}}{\left(b^{2}+c^{2} t^{2}\right)^{3}} \frac{c^{2} t}{\sqrt{b^{2}+c^{2} t^{2}}}=0 . \quad F_{ rad }=0 . No, the radiation reaction is zero.

Related Answered Questions