Question 12.3: One example of a (local) deterministic (“hidden variable”) t...

One example of a (local) deterministic (“hidden variable”) theory is …classical mechanics! Suppose we carried out the Bell experiment with classical objects (baseballs, say) in place of the electron and proton. They are launched (by a kind of double pitching machine) in opposite directions, with equal and opposite spins (angular momenta), S _{a} \text { and } S _{b}=- S _{a} . Now, these are classical objects— their angular momenta can point in any direction, and this direction is set (let’s say randomly) at the moment of launch. Detectors placed 10 meters or so on either side of the launch point measure the spin vectors of their respective baseballs. However, in order to match the conditions for Bell’s theorem, they only record the sign of the component of S along the directions a and b:

A \equiv \operatorname{sign}\left( a \cdot S _{a}\right), \quad B \equiv \operatorname{sign}\left( b \cdot S _{b}\right) .

Thus each detector records either +1 or -1 , in any given trial.

In this example the “hidden variable” is the actual orientation of S_a ,specified
(say) by the polar and azimuthal angles θ and \phi: \lambda=(\theta, \phi) :

(a) Choosing axes as in the figure, with a and b in the x–y plane and a along the x axis, verify that

A( a , \lambda) B( b , \lambda)=-\operatorname{sign}[\cos (\phi) \cos (\phi-\eta)] ,

where η is the angle between a and b (take it to run from -\pi \text { to }+\pi .

(b) Assuming the baseballs are launched in such a way that S_a is equally likely to point in any direction, compute P \text { (a, b). Answer: }(2|\eta| / \pi)-1 .

(c) Sketch the graph of P(a,b) , from \eta=-\pi \text { to }+\pi , and (on the same graph) the quantum formula (Equation 12.4, with \theta \rightarrow \eta ). For what values of η does this hidden variable theory agree with the quantum-mechanical result?

P( a , b )=- a \cdot b                 (12.4).

(d) Verify that your result satisfies Bell’s inequality, Equation 12.12. Hint: The vectors a, b, and c define three points on the surface of a unit sphere; the inequality can be expressed in terms of the distances between those points.

|P( a , b )-P( a , c )| \leq 1+P( b , c )                 (12.12).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Reading from the figure, a =\hat{i}, b =\cos \eta \hat{i}+\sin \eta \hat{j}, \quad S _{a}=S_{a}(\sin \theta \cos \phi \hat{i}+\sin \theta \sin \phi \hat{j}+\cos \theta \hat{k})=- S _{b} , so

a \cdot S _{a}=S_{a} \sin \theta \cos \phi ,

b \cdot S _{b}=-S_{a} \sin \theta(\cos \phi \cos \eta+\sin \phi \sin \eta)=-S_{a} \sin \theta \cos (\phi-\eta) .

But \sin \theta \geq 0 \text { (since } \theta \text { is between } 0 \text { and } \pi \text { ) } ,  so

A=\operatorname{sign}\left( a \cdot S _{a}\right)=\operatorname{sign}(\cos \phi), B=-\operatorname{sign}((\cos (\phi-\eta)), \text { and hence } A( a , \lambda) B( b , \lambda)=-\operatorname{sign}[\cos \phi \cos (\phi-\eta)] .

\text { (b) } P( a , b )=\langle A( a , \lambda) B( b , \lambda)\rangle=\frac{1}{4 \pi} \int[A( a , \lambda) B( b , \lambda)] \sin \theta d \theta d \phi=-\frac{2}{4 \pi} \int_{0}^{2 \pi} \operatorname{sign}[\cos \phi \cos (\phi-\eta)] d \phi \text {. }

Now, \cos \phi \text { is positive unless } \frac{\pi}{2}<\phi<\frac{3 \pi}{2}, \text { and } \cos (\phi-\eta) \text { is positive unless } \frac{\pi}{2}+\eta<\phi<\frac{3 \pi}{2}+\eta .

Assume first that 0<\eta<\frac{\pi}{2} , and chop the integral into eight segments, writing (++) to indicate that \cos \phi is positive and \cos (\phi-\eta) is positive, etc.:

P( a , b )=-\frac{1}{2 \pi}\left\{\int_{0}^{\eta}(++) d \phi+\int_{\eta}^{\pi / 2}(++) d \phi+\int_{\pi / 2}^{\pi / 2+\eta}(-+) d \phi+\int_{\pi / 2+\eta}^{\pi}(–) d \phi\right.

\left.+\int_{\pi}^{\pi+\eta}(–) d \phi+\int_{\pi+\eta}^{3 \pi / 2}(–) d \phi+\int_{3 \pi / 2}^{3 \pi / 2+\eta}(+-) d \phi+\int_{3 \pi / 2+\eta}^{2 \pi}(++) d \phi\right\} .

=-\frac{1}{2 \pi}\left\{(\eta-0)+\left(\frac{\pi}{2}-\eta\right)-\left(\frac{\pi}{2}+\eta-\frac{\pi}{2}\right)+\left(\pi-\frac{\pi}{2}-\eta\right)+(\pi+\eta-\pi)+\left(\frac{3 \pi}{2}-\pi-\eta\right)\right.

\left.-\left(\frac{3 \pi}{2}+\eta-\frac{3 \pi}{2}\right)+\left(2 \pi-\frac{3 \pi}{2}-\eta\right)\right\}=-\frac{1}{2 \pi}(2 \pi-4 \eta)=\frac{2 \eta}{\pi}-1 .

That’s for 0<\eta<\frac{\pi}{2} ; \text { for } \frac{\pi}{2}<\eta<\pi we have:

P( a , b )=-\frac{1}{2 \pi}\left\{\int_{0}^{\eta-\pi / 2}(+-) d \phi+\int_{\eta-\pi / 2}^{\pi / 2}(++) d \phi+\int_{\pi / 2}^{\eta}(-+) d \phi+\int_{\eta}^{\pi}(-+) d \phi\right.

\left.+\int_{\pi}^{\eta+\pi / 2}(-+) d \phi+\int_{\eta+\pi / 2}^{3 \pi / 2}(–) d \phi+\int_{3 \pi / 2}^{\eta+\pi}(+-) d \phi+\int_{\eta+\pi}^{2 \pi}(+-) d \phi\right\} .

=-\frac{1}{2 \pi}\left\{-\left(\eta-\frac{\pi}{2}-0\right)+\left(\frac{\pi}{2}-\eta+\frac{\pi}{2}\right)-\left(\eta-\frac{\pi}{2}\right)-(\pi-\eta)-\left(\eta+\frac{\pi}{2}-\pi\right)+\left(\frac{3 \pi}{2}-\eta-\frac{\pi}{2}\right)\right.

\left.-\left(\eta+\pi-\frac{3 \pi}{2}\right)-(2 \pi-\eta-\pi)\right\}=-\frac{1}{2 \pi}(2 \pi-4 \eta)=\frac{2 \eta}{\pi}-1 .  (same as before).

The average is an even function of η, so the general result \text { (for } \left.-\frac{\pi}{2}<\eta<\frac{\pi}{2}\right) \text { is } \frac{2|\eta|}{\pi}-1 \text {. }

(c) The quantum prediction (Equation 12.4) is P( a , b )=-\cos \eta ; plotting the two:

P( a , b )=- a \cdot b                 (12.4).

\operatorname{Plot}\left[\left\{\frac{2 Abs [ x ]}{\pi}-1,-\cos [ x ]\right\},\{ x ,-\pi, \pi\}, \text { PlotRange } \rightarrow\{-1,1\}\right] .

They agree at \eta=0, \pm \frac{\pi}{2}, \text { and } \pm \pi .

(d) In this example Bell’s inequality says \left|\frac{2}{\pi}\right| \eta_{a b}\left|-1-\frac{2}{\pi}\right| \eta_{a c}|+1| \leq 1+\frac{2}{\pi}\left|\eta_{b c}\right|-1, \text { or }

|| \eta_{a b}|-| \eta_{a c}|| \leq\left|\eta_{b c}\right| ,

where all angles are in the range [-\pi, \pi] ]. Now, first assume that \left|\eta_{a b}\right|>\left|\eta_{a c}\right| .  In that case

\left|\eta_{a b}\right| \leq\left|\eta_{a c}\right|+\left|\eta_{c b}\right| .

On the other hand, if \left|\eta_{a c}\right|>\left|\eta_{a b}\right| .

\left|\eta_{a c}\right| \leq\left|\eta_{a b}\right|+\left|\eta_{b c}\right| .

In either case, the equation says that one angle is smaller than the sum of the other two. This is clearly correct: the vectors a, b, and c define points a, b, and c on a unit sphere, and the angles between the vectors are proportional to the lengths of the great arcs connecting those points. So the inequality just expresses the fact that walking \straight” from a to b is shorter than walking from a to c and c to b (unless c happens to lie on your path in which case it is the same distance).

260

Related Answered Questions