Question 12.4: (a) Prove properties 12.17, 12.18, 12.19, and 12.20. (b) Sho...

(a) Prove properties 12.17, 12.18, 12.19, and 12.20.

\rho^{2}=\rho, \quad \text { (it is idempotent) }             (12.17).

\rho^{\dagger}=\rho, \quad \text { (it is hermitian), }             (12.18).

\operatorname{Tr}(\rho)=\sum_{i} \rho_{i i}=1 \text { (its trace is } 1 \text { ) }             (12.19).

\langle A\rangle=\operatorname{Tr}(\rho A )             (12.20).

(b) Show that the time evolution of the density operator is governed by the equation

i \hbar \frac{d \hat{\rho}}{d t}=[\hat{H}, \hat{\rho}]             (12.26).

(This is the Schrödinger equation, expressed in terms of \hat{\rho} ).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Equation 12.17:  \hat{\rho}^{2}=|\Psi\rangle\langle\Psi \mid \Psi\rangle\langle\Psi|, \text { and since } \Psi \text { is normalized, } \hat{\rho}^{2}=|\Psi\rangle 1\langle\Psi|=\hat{\rho} .

\rho^{2}=\rho, \quad \text { (it is idempotent) }             (12.17).

Equation 12.18: To find the Hermitian conjugate of an operator in Dirac notation, we reverse the order of the terms, switch bras and kets, place a † on every operator and a * on every number:

\rho^{\dagger}=\rho, \quad \text { (it is hermitian), }             (12.18).

\hat{\rho}^{\dagger}=(|\Psi\rangle\langle\Psi|)^{\dagger}=|\Psi\rangle\langle\Psi|=\rho .

Equation 12.19: \operatorname{Tr}(\rho)=\sum_{i} \rho_{i i}=\sum_{i}\left\langle e_{i} \mid \Psi\right\rangle\left\langle\Psi \mid e_{i}\right\rangle=\left\langle\Psi\left|\left(\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)\right| \Psi\right\rangle=\langle\Psi \mid \Psi\rangle=1 .

\operatorname{Tr}(\rho)=\sum_{i} \rho_{i i}=1 \text { (its trace is } 1 \text { ) }             (12.19).

Equation 12.20:

\langle A\rangle=\operatorname{Tr}(\rho A )             (12.20).

\operatorname{Tr}(\rho A )=\sum_{i}(\rho A )_{i i}=\sum_{i} \sum_{j} \rho_{i j} A_{j i}=\sum_{i} \sum_{j}\left\langle e_{i} \mid \Psi\right\rangle\left\langle\Psi \mid e_{j}\right\rangle\left\langle e_{j}|\hat{A}| e_{i}\right\rangle .

=\sum_{i} \sum_{j}\left\langle\Psi \mid e_{j}\right\rangle\left\langle e_{j}|\hat{A}| e_{i}\right\rangle\left\langle e_{i} \mid \Psi\right\rangle=\left\langle\Psi\left|\left(\sum_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|\right) \hat{A}\left(\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)\right| \Psi\right\rangle=\langle\Psi|\hat{A}| \Psi\rangle .

=\langle A\rangle .

(b) i \hbar \frac{d}{d t} \hat{\rho}=i \hbar(|\dot{\Psi}\rangle\langle\Psi|+| \Psi\rangle\langle\dot{\Psi}|) .  From the Schrödinger equation: i \hbar|\dot{\Psi}\rangle=\hat{H}|\Psi\rangle , and, taking the adjoint: -i \hbar\langle\dot{\Psi}|=\langle\Psi| \hat{H} . Thus

i \hbar \frac{d}{d t} \hat{\rho}=\hat{H}|\Psi\rangle\langle\Psi|-| \Psi\rangle\langle\Psi| \hat{H}=\hat{H} \hat{\rho}-\hat{\rho} \hat{H}=[\hat{H}, \hat{\rho}] .

Related Answered Questions