(a) Equation 12.31: As in Problem 12.4(a), ρ^†=(∑kpk∣Ψk⟩⟨Ψk∣)†=∑k∣Ψk⟩⟨Ψk∣pk∗, Since pk is real,
ρ†=ρ (12.31).
ρ^†=ρ^.
Equation 12.32:
Tr(ρ)=1 (12.32).
Tr[ρ]=∑iρii=∑i∑kpk⟨ei∣Ψk⟩⟨Ψk∣ei⟩=∑kpk⟨Ψk∣∑i∣ei⟩⟨ei∣∣Ψk⟩.
=∑kpk⟨Ψk∣Ψk⟩=∑kpk=1.
In the last two steps I used the fact that each wave function is normalized, and Equation (12.30).
0≤pk≤1 and ∑kpk=1 (12.30).
Equation 12.33:
⟨A⟩=Tr(ρA) (12.33).
Tr(ρA)=∑i(ρA)ii=∑i∑jρijAji=∑i∑j∑kpk⟨ei∣Ψk⟩⟨Ψk∣ej⟩⟨ej∣A^∣ei⟩.
=∑kpk⟨Ψk∣∣∣∣(∑j∣ej⟩⟨ej∣)A^(∑i∣ei⟩⟨ei∣)∣∣∣∣Ψk⟩=∑kpk⟨Ψk∣A^∣Ψk⟩=⟨A⟩.
Equation 12.34: As in Problem 12.4(b):
iℏdtdρ^=[H^,ρ^], (if dtdpk=0 for all k ) (12.34).
iℏdtdρ^=iℏ∑kpk(∣∣∣∣Ψ˙k⟩⟨Ψk∣+∣Ψk⟩⟨Ψ˙k∣∣∣∣)=∑kpk(H^∣Ψk⟩⟨Ψk∣−∣Ψk⟩⟨Ψk∣H^).
=H^ρ^−ρ^H^=[H^,ρ^].
(b)
Tr(ρ2)=∑i(ρ2)ii=∑i∑k∑jpkpj⟨ei∣Ψk⟩⟨Ψk∣Ψj⟩⟨Ψj∣ei⟩.
=∑k∑jpkpj⟨Ψj∣(∑i∣ei⟩⟨ei∣)∣Ψk⟩⟨Ψk∣Ψj⟩=∑k∑jpkpj∣⟨Ψk∣Ψj⟩∣2.
The wave functions are normalized, so ∣⟨Ψk∣Ψj⟩∣≤1, with equality if and only if k = j. Therefore, unless this is a pure state
Tr(ρ2)<∑k∑jpkpj=∑kpk∑jpj=1 . QED
(c) We already know that ρ2=ρ for a pure state. In part (b) we proved that Tr(ρ2)<1 for a non-pure state, whereas from (a) Tr(ρ) = 1 for any density matrix. Therefore, for a non-pure state ρ2=ρ (they have different traces). QED