Question 12.6: (a) Prove properties 12.31, 12.32, 12.33, and 12.34. (b) Sho...

(a) Prove properties 12.31, 12.32, 12.33, and 12.34.

ρ=ρ \rho^{\dagger}=\rho            (12.31).

Tr(ρ)=1 \operatorname{Tr}(\rho)=1            (12.32).

A=Tr(ρA) \langle A\rangle=\operatorname{Tr}(\rho A )            (12.33).

idρ^dt=[H^,ρ^], (if dpkdt=0 for all k )  i \hbar \frac{d \hat{\rho}}{d t}=[\hat{H}, \hat{\rho}] , \text { (if } \frac{d p_{k}}{d t}=0 \text { for all } k \text { ) }            (12.34).

(b) Show that Tr(ρ2)1 \operatorname{Tr}\left(\rho^{2}\right) \leq 1 , and equal to 1 only if ρ represents a pure state.

(c) Show that ρ² = ρ if and only if ρ represents a pure state.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Equation 12.31: As in Problem 12.4(a), ρ^=(kpkΨkΨk)=kΨkΨkpk\hat{\rho}^{\dagger}=\left(\sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right|\right)^{\dagger}=\sum_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| p_{k}^{*} , Since pk p_k is real,

ρ=ρ \rho^{\dagger}=\rho            (12.31).

ρ^=ρ^ \hat{\rho}^{\dagger}=\hat{\rho} .

Equation 12.32:

Tr(ρ)=1 \operatorname{Tr}(\rho)=1            (12.32).

Tr[ρ]=iρii=ikpkeiΨkΨkei=kpkΨkieieiΨk \operatorname{Tr}[\rho]=\sum_{i} \rho_{i i}=\sum_{i} \sum_{k} p_{k}\left\langle e_{i} \mid \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid e_{i}\right\rangle=\sum_{k} p_{k}\left\langle\Psi_{k}\left|\sum_{i}\right| e_{i}\right\rangle\left\langle e_{i}|| \Psi_{k}\right\rangle .

=kpkΨkΨk=kpk=1 =\sum_{k} p_{k}\left\langle\Psi_{k} \mid \Psi_{k}\right\rangle=\sum_{k} p_{k}=1 .

In the last two steps I used the fact that each wave function is normalized, and Equation (12.30).

0pk1 and kpk=1 0 \leq p_{k} \leq 1 \text { and } \sum_{k} p_{k}=1                    (12.30).

Equation 12.33:

A=Tr(ρA) \langle A\rangle=\operatorname{Tr}(\rho A )            (12.33).

Tr(ρA)=i(ρA)ii=ijρijAji=ijkpkeiΨkΨkejejA^ei \operatorname{Tr}(\rho A )=\sum_{i}(\rho A )_{i i}=\sum_{i} \sum_{j} \rho_{i j} A_{j i}=\sum_{i} \sum_{j} \sum_{k} p_{k}\left\langle e_{i} \mid \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid e_{j}\right\rangle\left\langle e_{j}|\hat{A}| e_{i}\right\rangle .

=kpkΨk(jejej)A^(ieiei)Ψk=kpkΨkA^Ψk=A =\sum_{k} p_{k}\left\langle\Psi_{k}\left|\left(\sum_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|\right) \hat{A}\left(\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)\right| \Psi_{k}\right\rangle=\sum_{k} p_{k}\left\langle\Psi_{k}|\hat{A}| \Psi_{k}\right\rangle=\langle A\rangle .

Equation 12.34: As in Problem 12.4(b):

idρ^dt=[H^,ρ^], (if dpkdt=0 for all k )  i \hbar \frac{d \hat{\rho}}{d t}=[\hat{H}, \hat{\rho}] , \text { (if } \frac{d p_{k}}{d t}=0 \text { for all } k \text { ) }            (12.34).

iddtρ^=ikpk(Ψ˙kΨk+ΨkΨ˙k)=kpk(H^ΨkΨkΨkΨkH^) i \hbar \frac{d}{d t} \hat{\rho}=i \hbar \sum_{k} p_{k}\left(\left|\dot{\Psi}_{k}\right\rangle\left\langle\Psi_{k}|+| \Psi_{k}\right\rangle\left\langle\dot{\Psi}_{k}\right|\right)=\sum_{k} p_{k}\left(\hat{H}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}|-| \Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \hat{H}\right) .

=H^ρ^ρ^H^=[H^,ρ^] =\hat{H} \hat{\rho}-\hat{\rho} \hat{H}=[\hat{H}, \hat{\rho}] .

(b)

Tr(ρ2)=i(ρ2)ii=ikjpkpjeiΨkΨkΨjΨjei \operatorname{Tr}\left(\rho^{2}\right)=\sum_{i}\left(\rho^{2}\right)_{i i}=\sum_{i} \sum_{k} \sum_{j} p_{k} p_{j}\left\langle e_{i} \mid \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle\left\langle\Psi_{j} \mid e_{i}\right\rangle .

=kjpkpjΨj(ieiei)ΨkΨkΨj=kjpkpjΨkΨj2 =\sum_{k} \sum_{j} p_{k} p_{j}\left\langle\Psi_{j}\left|\left(\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)\right| \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle=\sum_{k} \sum_{j} p_{k} p_{j}\left|\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle\right|^{2} .

The wave functions are normalized, so ΨkΨj1 \left|\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle\right| \leq 1 , with equality if and only if k = j. Therefore, unless this is a pure state

Tr(ρ2)<kjpkpj=kpkjpj=1 \operatorname{Tr}\left(\rho^{2}\right)<\sum_{k} \sum_{j} p_{k} p_{j}=\sum_{k} p_{k} \sum_{j} p_{j}=1 . QED

(c) We already know that ρ2=ρ \rho^{2}=\rho for a pure state. In part (b) we proved that Tr(ρ2)<1 \operatorname{Tr}\left(\rho^{2}\right)<1 for a non-pure state, whereas from (a) Tr(ρ) = 1 for any density matrix. Therefore, for a non-pure state ρ2ρ \rho^{2} \neq \rho (they have different traces). QED

Related Answered Questions