Question 4.14: Design of a zener regulator and PSpice/SPICE verification Th...

Design of a zener regulator and PSpice/SPICE verification The parameters of the zener diode for the voltage regulator in Fig. 4.26(a) are V_{ Z }=4.7 V \text { at } I_{ ZT }=20 mA , R_{ Z }=19 \Omega, I_{ ZK }=1 mA , \text { and } P_{ Z (\max )}=400 mW  at 4.7 V. The supply voltage v_{ S }=V_{ S } varies from 20 V to 30 V, and the load current i_{ L }  changes from 5 mA to 50 mA.

(a) Determine the value of resistance R_{ s } and its power rating.

(b) Use PSpice/SPICE to check your results by plotting the output voltage v_{ O } against the supply voltage v_{ S } .

Assume PSpice model parameters of zener diode D1N750:

IS=880.5E-18  N=1  CJO=175P  VJ=.75  BV=4.7  IBV=20.245M

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

V_{ Z }=4.7 V , P_{ Z (\max )}=400 mW , i_{ L (\min )}=5 mA , i_{ L (\max )}=50 mA , V_{ S (\min )}=20 V , \text { and } V_{ S (\max )}=30 V . Using Eq. (4.37), we have

 

v_{ Z }=v_{ ZO }+R_{ Z } i_{ Z }                                     (4.37)

 

V_{ ZO }=V_{ Z }-R_{ Z } I_{ ZT }=4.7-19 \times 20 mA =4.32 V

 

Also,                    i_{Z(\max )}=\frac{P_{Z(\max )}}{V_{Z}}=\frac{400 mW }{4.7 V }=85.1 mA \text { (from specifications) }

 

(a) Since the minimum value of the zener current is not specified, we can assume for all practical purposes that

 

i_{ Z ( min )}=0.1 \times i_{ Z (\max )}=0.1 \times 85.1 mA =8.51 mA

 

From Eq. (4.44) and Fig. 4.26(b), we can find the value of R_{ s } :

 

R_{ s }=\frac{V_{ S ( min )}-\left(V_{ ZO }+R_{ Z } i_{ Z ( min )}\right)}{i_{ Z ( min )}+i_{ L (\max )}}                                  (4.44)

 

R_{ s }=\frac{V_{ S ( min )}-V_{ ZO }-R_{ Z } i_{ Z ( min )}}{i_{ Z (\min )}+i_{ L (\max )}}=\frac{20 V -4.32 V -19 \Omega \times 8.51 mA }{8.51 mA +50 mA }=265 \Omega

 

From Eq. (4.45), we can find

 

R_{ s }=\frac{V_{ S ( max )}-\left(V_{ ZO }+R_{ Z } i_{ Z ( min )}\right)}{i_{ Z (\max )}+i_{ L (\min )}}                                    (4.45)

 

R_{ s }\left(i_{ Z (\max )}+i_{ L ( min )}\right)=V_{ S (\max )}-V_{ ZO }-R_{ Z } i_{ Z (\max )}

 

which can be solved to find the actual value of the maximum zener current i_{Z(\max )} :

 

i_{ Z (\max )}=\frac{V_{ S (\max )}-V_{ ZO }-R_{ s } i_{ L ( min )}}{R_{ s }+R_{ Z }}=\frac{30 V -4.32 V -265 \Omega \times 5 mA }{(265+19) \Omega}=85.76 mA

 

The power rating P_{ R } \text { of } R_{ s } is

 

\begin{aligned}P_{ R } & \approx\left(i_{ Z (\max )}+i_{ L ( min )}\right)\left(V_{ S (\max )}-V_{ Z }\right) \\&=(85.76 mA +5 mA )(30 V -4.7 V )=2.3 W\end{aligned}

 

The worst-case power rating will be

 

P_{ R (\max )}=\frac{V_{ S (\max )}^{2}}{R_{ s }}=\frac{30^{2}}{265}=3.4 W

 

From i_{L(\min )}=5 mA \text { and } i_{ L (\max )}=50 mA , we find that the corresponding maximum and minimum values of the load resistance are

 

\begin{aligned}&R_{ L (\max )}=\frac{V_{ Z }}{i_{ L (\min )}}=\frac{4.7 V }{5 mA }=940 \Omega \\&R_{ L (\min )}=\frac{V_{ Z }}{i_{ L (\max )}}=\frac{4.7 V }{50 mA }=94 \Omega\end{aligned}

 

The zener voltage regulator for the PSpice simulation is shown in Fig. 4.27. The zener diode is normally modeled by setting the diode parameter B V \cong V_{ Z } in the PSpice model.

(b) The PSpice plot of the output voltage v_{ O } against supply voltage v_{ S } is shown in Fig. 4.28. The zener action begins at an output voltage of v_{ O }=4.74 V , which is close to the expected value of 4.7 V.

Screenshot 2021-10-20 140720
Screenshot 2021-10-20 140720

Related Answered Questions