Question 12.64: An ideal magnetic dipole moment m is located at the origin o...

An ideal magnetic dipole moment m is located at the origin of an inertial system S\overline{ S } that moves with speed vv in the x direction with respect to inertial system S. In S\overline{ S } the vector potential is

A=μ04πm×r^rˉ2\overline{ A }=\frac{\mu_{0}}{4 \pi} \frac{\overline{ m } \times \overline{\hat{ r }}}{\bar{r}^{2}},

(Eq. 5.85), and the scalar potential Vˉ\bar{V} is zero.

Adip(r)=μ04πm×r^r2A _{ dip }( r )=\frac{\mu_{0}}{4 \pi} \frac{ m \times \hat{ r }}{r^{2}}                                     (5.85)

(a) Find the scalar potential V in S. [Answer:

14πϵ0R^(v×m)c2R2(1v2/c2)1(v2/c2)sin2θ)3/2]\left.\frac{1}{4 \pi \epsilon_{0}} \frac{\hat{ R } \cdot( v \times m )}{c^{2} R^{2}} \frac{\left(1-v^{2} / c^{2}\right)}{\left.1-\left(v^{2} / c^{2}\right) \sin ^{2} \theta\right)^{3 / 2}}\right]

(b) In the nonrelativistic limit, show that the scalar potential in S is that of an ideal electric dipole of magnitude

p=v×mc2p =\frac{ v \times m }{c^{2}},

located at O\overline{ O }.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

 (a) Aμ=(V/c,Ax,Ay,Az) is a 4-vector (like xμ=(ct,x,y,z)), so (using Eq. 12.19): V=γ(Vˉ+vAˉx)\text { (a) } \left.A^{\mu}=\left(V / c, A_{x}, A_{y}, A_{z}\right) \text { is a 4-vector (like } x^{\mu}=(c t, x, y, z)\right) \text {, so (using Eq. 12.19): } V=\gamma\left(\bar{V}+v \bar{A}_{x}\right) . But Vˉ=0\bar{V}=0 , and

Aˉx=μ04π(m×r)xrˉ3\bar{A}_{x}=\frac{\mu_{0}}{4 \pi} \frac{( m \times \overline{ r })_{x}}{\bar{r}^{3}}

 

 (i′) x=γ(xˉ+vtˉ), (ii′) y=yˉ, (iii′) z=zˉ (iv′) t=γ(tˉ+vc2xˉ)}\left. \begin{matrix} \text { (i′) } x=\gamma(\bar{x}+v \bar{t}), \\ \text { (ii′) } y=\bar{y}, \\ \text { (iii′) } z=\bar{z} \text {, } \\ \text { (iv′) } t=\gamma\left(\bar{t}+\frac{v}{c^{2}} \bar{x}\right) \text {. } \end{matrix} \right\}                            (12.19)

 Now (m×r)x=myzˉmzyˉ=myzmzy\text { Now }( m \times \overline{ r })_{x}=m_{y} \bar{z}-m_{z} \bar{y}=m_{y} z-m_{z} y . So

V=γvμ04π(myzmzy)rˉ3V=\gamma v \frac{\mu_{0}}{4 \pi} \frac{\left(m_{y} z-m_{z} y\right)}{\bar{r}^{3}}

Now xˉ=γ(xvt)=γRx,yˉ=y=Ry,zˉ=z=Rz\bar{x}=\gamma(x-v t)=\gamma R_{x}, \bar{y}=y=R_{y}, \bar{z}=z=R_{z} , where R is the vector (in S) from the (instantaneous) location of the dipole to the point of observation. Thus

rˉ2=γ2Rx2+Ry2+Rz2=γ2(Rx2+Ry2+Rz2)+(1γ2)(Ry2+Rz2)=γ2(R2v2c2R2sin2θ)\bar{r}^{2}=\gamma^{2} R_{x}^{2}+R_{y}^{2}+R_{z}^{2}=\gamma^{2}\left(R_{x}^{2}+R_{y}^{2}+R_{z}^{2}\right)+\left(1-\gamma^{2}\right)\left(R_{y}^{2}+R_{z}^{2}\right)=\gamma^{2}\left(R_{2}-\frac{v^{2}}{c^{2}} R^{2} \sin ^{2} \theta\right)

(where θ is the angle between R and the x-axis, so that Ry2+Rz2=R2sin2θ)\left.R_{y}^{2}+R_{z}^{2}=R^{2} \sin ^{2} \theta\right).

V=μ04πvγ(myRzmzRy)γ3R3(1v2c2sin2θ)3/2;v(m×R)=v(m×R)x=v(myRzmzRy)\therefore V=\frac{\mu_{0}}{4 \pi} \frac{v \gamma\left(m_{y} R_{z}-m_{z} R_{y}\right)}{\gamma^{3} R^{3}\left(1-\frac{v^{2}}{c^{2}} \sin ^{2} \theta\right)^{3 / 2}} ; v \cdot( m \times R )=v( m \times R )_{x}=v\left(m_{y} R_{z}-m_{z} R_{y}\right) , so

V=μ04πv(m×R)(1v2c2)R3(1v2c2sin2θ)3/2V=\frac{\mu_{0}}{4 \pi} \frac{ v \cdot( m \times R )\left(1-\frac{v^{2}}{c^{2}}\right)}{R^{3}\left(1-\frac{v^{2}}{c^{2}} \sin ^{2} \theta\right)^{3 / 2}},

 or, using μ0=1ϵ0c2 and v(m×R)=R(v×m):V=14πϵ0R^(v×m)(1v2c2)c2R2(1v2c2sin2θ)3/2\text { or, using } \mu_{0}=\frac{1}{\epsilon_{0} c^{2}} \text { and } v \cdot( m \times R )= R \cdot( v \times m ): \quad V=\frac{1}{4 \pi \epsilon_{0}} \frac{\widehat{ R } \cdot( v \times m )\left(1-\frac{v^{2}}{c^{2}}\right)}{c^{2} R^{2}\left(1-\frac{v^{2}}{c^{2}} \sin ^{2} \theta\right)^{3 / 2}}

(b) In the nonrelativistic limit (v2c2)\left(v^{2} \ll c^{2}\right):

V=14πϵ0R^(v×m)c2R2=14πϵ0R^pR2, with p=v×mc2V=\frac{1}{4 \pi \epsilon_{0}} \frac{\widehat{ R } \cdot( v \times m )}{c^{2} R^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\widehat{ R } \cdot p }{R^{2}}, \quad \text { with } \quad p =\frac{ v \times m }{c^{2}},

which is the potential of an electric dipole.

Related Answered Questions