Question 12.69: A charge q is released from rest at the origin, in the prese...

A charge q is released from rest at the origin, in the presence of a uniform electric field E =E_{0} \hat{ z } and a uniform magnetic field B =B_{0} \hat{ x }. Determine the trajectory of the particle by transforming to a system in which E = 0, finding the path in that system and then transforming back to the original system. Assume E_{0}<c B_{0}. Compare your result with Ex. 5.2.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Rewrite Eq. } 12.109 \text { with } x \rightarrow y, y \rightarrow z, z \rightarrow x:

\begin{aligned}&\bar{E}_{x}=E_{x}, \quad \bar{E}_{y}=\gamma\left(E_{y}-v B_{z}\right), \quad \bar{E}_{z}=\gamma\left(E_{z}+v B_{y}\right) \\&\bar{B}_{x}=B_{x}, \quad \bar{B}_{y}=\gamma\left(B_{y}+\frac{v}{c^{2}} E_{z}\right), \quad \bar{B}_{z}=\gamma\left(B_{z}-\frac{v}{c^{2}} E_{y}\right)\end{aligned}                               (12.109)

\begin{array}{lll}\bar{E}_{y}=E_{y} & \bar{E}_{z}=\gamma\left(E_{z}-v B_{x}\right) & \bar{E}_{x}=\gamma\left(E_{x}+v B_{z}\right) \\\bar{B}_{y}=B_{y} & \bar{B}_{z}=\gamma\left(B_{z}+\frac{v}{c^{2}} E_{x}\right) & \bar{B}_{x}=\gamma\left(B_{x}-\frac{v}{c^{2}} E_{z}\right)\end{array}

This gives the fields in system \overline{ S } moving in the y direction at speed v.

\text { Now } E =\left(0,0, E_{0}\right) ; B =\left(B_{0}, 0,0\right), \text { so } \bar{E}_{y}=0, \bar{E}_{z}=\gamma\left(E_{0}-v B_{0}\right), \bar{E}_{x}=0.

\text { If we want } \overline{ E }= 0 \text {, we must pick } v \text { so that } E_{0}-v B_{0}=0 \text {; i.e. } v=E_{0} / B_{0}

(The condition E_{0} / B_{0}<c guarantees that there is no problem getting to such a system.)

With this, \bar{B}_{y}=0, \bar{B}_{z}=0, \bar{B}_{x}=\gamma\left(B_{0}-\frac{v}{c^{2}} E_{0}\right)=\gamma B_{0}\left(1-\frac{v^{2}}{c^{2}}\right)=\gamma B_{0} \frac{1}{\gamma^{2}}=\frac{1}{\gamma} B_{0} ; \quad \overline{ B }=\frac{1}{\gamma} B_{0} \hat{ x }.

The trajectory in \overline{ S }: Since the particle started out at rest at the origin in S, it started out with velocity -v \hat{ y } \text { in } \overline{ S }. According to Eq. 12.71 it will move in a circle of radius R, given by

p = Q B R                               (12.71)

p=q B R, \text { or } \gamma m v=q\left(\frac{1}{\gamma} B_{0}\right) R \Rightarrow R=\frac{m \gamma^{2} v}{q B_{0}}.

The actual trajectory is given by \bar{x}=0 ; \bar{y}=-R \sin \omega \bar{t} ; \bar{z}=R(1-\cos \omega \bar{t}) ; \text { where } \quad \omega=\frac{v}{R}.

The trajectory in S: The Lorentz transformations Eqs. 12.18 and 12.19, for the case of relative motion in the y-direction, read:

\begin{matrix} \text { (i) } \bar{x}=\gamma(x-v t) \text {, } \\ \text { (ii) } \bar{y}=y \text {, } \\ \text { (iii) } \bar{z}=z \text {, } \\ \text { (iv) } \bar{t}=\gamma\left(t-\frac{v}{c^{2}} x\right) \text {. } \end{matrix}                           (12.18)

\left. \begin{matrix} \text { (i′) } x=\gamma(\bar{x}+v \bar{t}), \\ \text { (ii′) } y=\bar{y} \text {, } \\ \text { (iii′) } z=\bar{z} \text {, } \\ \text { (iv′) } t=\gamma\left(\bar{t}+\frac{v}{c^{2}} \bar{x}\right). \end{matrix} \right\}                                     (12.19)

\begin{array}{ll}\bar{x}=x & x=\bar{x} \\\bar{y}=\gamma(y-v t) & y=\gamma(\bar{y}+v \bar{t}) \\\bar{z}=z \quad & z=\bar{z} \\\bar{t}=\gamma\left(t-\frac{v}{c^{2}} y\right) & t=\gamma\left(\bar{t}+\frac{v}{c^{2}} \bar{y}\right)\end{array}

So the trajectory in S is given by:

x=0 ; y=\gamma(-R \sin \omega \bar{t}+v \bar{t})=\gamma\left\{-R \sin \left[\omega \gamma\left(t-\frac{v}{c^{2}} y\right)\right]+v \gamma\left(t-\frac{v}{c^{2}} y\right)\right\} , or

\underbrace{y\left(1+\gamma^{2} \frac{v^{2}}{c^{2}}\right)}_{\gamma^{2} y\left(1-\frac{v^{2}}{c^{2}}+\frac{v^{2}}{c^{2}}\right)=\gamma^{2} y}=\gamma^{2} v t-\gamma R \sin \left[\omega \gamma\left(t-\frac{v}{c^{2}} y\right)\right]\}(y-v t) \gamma=-R \sin \left[\omega \gamma\left(t-\frac{v}{c^{2}} y\right)\right];

z=R\left(1-\cos ^{2} \omega \bar{t}\right)=R\left[1-\cos \omega \gamma\left(t-\frac{v}{c^{2}} y\right)\right].

\text { So: } x=0 ; y=v t-\frac{R}{\gamma} \sin \left[\omega \gamma\left(t-\frac{v}{c^{2}} y\right)\right] ; z=R-R \cos \left[\omega \gamma\left(t-\frac{v}{c^{2}}\right)\right] .

We can get rid of the trigonometric terms by the usual trick:

\left.\begin{array}{l}\gamma(y-v t)=-R \sin \left[\omega \gamma\left(t-\frac{v}{c^{2}} y\right)\right] \\z-R=-R \cos\left[\omega \gamma\left(t-\frac{v}{c^{2}} y\right)\right]\end{array}\right\} \Rightarrow \gamma^{2}(y-v t)^{2}+(z-R)^{2}=R^{2}.

Absent the \gamma^{2}, this would be the cycloid we found back in Ch. 5 (Eq. 5.9). The \gamma^{2} makes it, as it were, an elliptical cycloid — same picture as Fig. 5.7, but with the horizontal axis stretched out.

(y-R \omega t)^{2}+(z-R)^{2}=R^{2}                            (5.9)

aa
bb
5.7

Related Answered Questions