Question 3.137: An AISI 1018 steel ball with 1-in diameter is used as a roll...

An AISI 1018 steel ball with 1-in diameter is used as a roller between a flat plate made from 2024 T3 aluminum and a flat table surface made from ASTM No. 30 gray cast iron. Determine the maximum amount of weight that can be stacked on the aluminum plate without exceeding a maximum shear stress of 20 kpsi in any of the three pieces. Assume Fig. 3–37, which is based on a typical Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials.

An AISI 1018 steel ball with 1-in diameter is used as a roller between a flat plate made from 2024 T3 aluminum and a flat table surface made from ASTM No. 30 gray cast iron. Determine the maximum amount of weight that can be stacked on the aluminum plate without exceeding a maximum shear stress of

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Aluminum Plate-Ball interface: From Eq. (3-68),

\begin{aligned}&a=\sqrt[3]{\left(\frac{3 F}{8}\right) \frac{\left(1-v_{1}^{2}\right) / E_{1}+\left(1-v_{2}^{2}\right) / E_{2}}{1 / d_{1}+1 / d_{2}}} \\&a=\sqrt[3]{\left(\frac{3 F}{8}\right) \frac{\left(1-0.292^{2}\right) /\left[(30)\left(10^{6}\right)\right]+\left(1-0.333^{2}\right) /\left[(10.4)\left(10^{6}\right)\right]}{1 / 1+1 / \infty}}=3.517\left(10^{-3}\right) F^{1 / 3} \text { in }\end{aligned}

From Eq. (3-69),

p_{\max }=\frac{3 F}{2 \pi a^{2}}=\frac{3 F}{2 \pi\left[3.517\left(10^{-3}\right) F^{1 / 3}\right]^{2}}=3.860\left(10^{4}\right) F^{1 / 3}  psi

By examination of Eqs. (3-70), (3-71), and (3-72), it can be seen that the only difference in the maximum shear stress for the plate and the ball will be due to poisson’s ratio in Eq. (3-70). The larger poisson’s ratio will create the greater maximum shear stress, so the aluminum plate will be the critical element in this interface. Applying the equations for the aluminum plate,

\begin{gathered}\sigma_{1}=-3.86\left(10^{4}\right) F^{1 / 3}\left\{\left[1-0.48 \tan ^{-1}(1 / 0.48)\right](1+0.333)-\frac{1}{2\left(1+0.48^{2}\right)}\right\}=-8025 F^{1 / 3}  psi \\\sigma_{3}=\frac{-3.86\left(10^{4}\right) F^{1 / 3}}{1+0.48^{2}}=-3.137\left(10^{4}\right) F^{1 / 3}  psi\end{gathered}

From Eq. (3-72),

\tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2}=\frac{\left(-8025 F^{1 / 3}\right)-\left(-3.137\left(10^{4}\right) F^{1 / 3}\right)}{2}=1.167\left(10^{4}\right) F^{1 / 3}  psi

Comparing this stress to the allowable stress, and solving for F,

F=\left[\frac{20000}{1.167\left(10^{4}\right)}\right]^{3}=5.03  lbf

Table-Ball interface: From Eq. (3-68),

a=\sqrt[3]{\left(\frac{3 F}{8}\right) \frac{\left(1-0.292^{2}\right) /\left[(30)\left(10^{6}\right)\right]+\left(1-0.211^{2}\right) /\left[(14.5)\left(10^{6}\right)\right]}{1 / 1+1 / \infty}}=3.306\left(10^{-3}\right) F^{1 / 3} \text { in }

From Eq. (3-69),

p_{\max }=\frac{3 F}{2 \pi a^{2}}=\frac{3 F}{2 \pi\left[3.306\left(10^{-3}\right) F^{1 / 3}\right]^{2}}=4.369\left(10^{4}\right) F^{1 / 3}  psi

The steel ball has a higher poisson’s ratio than the cast iron table, so it will dominate.

\begin{gathered}\sigma_{1}=-4.369\left(10^{4}\right) F^{1 / 3}\left\{\left[1-0.48 \tan ^{-1}(1 / 0.48)\right](1+0.292)-\frac{1}{2\left(1+0.48^{2}\right)}\right\}=-8258 F^{1 / 3} \text { psi } \\\sigma_{3}=\frac{-4.369\left(10^{4}\right) F^{1 / 3}}{1+0.48^{2}}=-3.551\left(10^{4}\right) F^{1 / 3}  psi\end{gathered}

From Eq. (3-72),

\tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2}=\frac{\left(-8258 F^{1 / 3}\right)-\left(-3.551\left(10^{4}\right) F^{1 / 3}\right)}{2}=1.363\left(10^{4}\right) F^{1 / 3} \text { psi }

Comparing this stress to the allowable stress, and solving for F,

F=\left[\frac{20000}{1.363\left(10^{4}\right)}\right]^{3}=3.16  lbf

The steel ball is critical, with F = 3.16 lbf.

____________________________________________________________________________________________________________

Eq. 3-68 : a=\sqrt[3]{\frac{3 F}{8} \frac{\left(1-v_{1}^{2}\right) / E_{1}+\left(1-v_{2}^{2}\right) / E_{2}}{1 / d_{1}+1 / d_{2}}}

Eq. 3-69 : p_{\max }=\frac{3 F}{2 \pi a^{2}}

Eq. 3-70 : \sigma_{1}=\sigma_{2}=\sigma_{x}=\sigma_{y}=-p_{\max }\left[\left(1-\left|\frac{z}{a}\right| \tan ^{-1} \frac{1}{|z / a|}\right)(1+v)-\frac{1}{2\left(1+\frac{z^{2}}{a^{2}}\right)}\right]

Eq. 3-71 : \sigma_{3}=\sigma_{z}=\frac{-p_{\max }}{1+\frac{z^{2}}{a^{2}}}

Eq. 3-72 : \tau_{\max }=\tau_{1 / 3}=\tau_{2 / 3}=\frac{\sigma_{1}-\sigma_{3}}{2}=\frac{\sigma_{2}-\sigma_{3}}{2}

 

 

Related Answered Questions