Question 3.141: A wheel of diameter d and width w carrying a load F rolls on...

A wheel of diameter d and width w carrying a load F rolls on a flat rail.
Assume that Fig. 3–39, which is based on a Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses \sigma_{x}, \sigma_{y}, \sigma_{z}, and τmax for the wheel.

\begin{array}{cccccc}\hline \text { Problem } & & & & \text { Wheel } & \text { Rail } \\\text { Number } & d & w & F & \text { Material } & \text { Material } \\\hline 3 - 1 4 0 & 5  in & 2 \text { in } & 600  lbf & \text { Steel } & \text { Steel } \\3 - 1 4 1 & 150  mm & 40  mm & 2  kN & \text { Steel } & \text { Cast iron } \\3 - 1 4 2 & 3 \text { in } & 1.25  mm & 250  lbf & \text { Cast iron } & \text { Cast iron } \\\hline\end{array}

A wheel of diameter d and width w carrying a load F rolls on a flat rail. Assume that Fig. 3–39, which is based on a Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses σx ,

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use Eqs. (3-73) through (3-77).

\begin{aligned}b &=\left(\frac{2 F}{\pi l} \frac{\left(1-v_{1}^{2}\right) / E_{1}+\left(1-v_{2}^{2}\right) / E_{2}}{1 / d_{1}+1 / d_{2}}\right)^{1 / 2} \\&=\left(\frac{2(2000)}{\pi(40)} \frac{\left(1-0.292^{2}\right) /\left[207\left(10^{3}\right)\right]+\left(1-0.211^{2}\right) /\left[100\left(10^{3}\right)\right]}{1 / 150+1 / \infty}\right)^{1 / 2} \\b &=0.2583  mm\end{aligned}

 

p_{\max }=\frac{2 F}{\pi b l}=\frac{2(2000)}{\pi(0.2583)(40)}=123.2  MPa

 

\begin{aligned}\sigma_{x} &=-2 v  p_{\max }\left(\sqrt{1+\frac{z^{2}}{b^{2}}}-\left|\frac{z}{b}\right|\right)=-2(0.292)(123.2)\left(\sqrt{1+0.786^{2}}-0.786\right) \\&=-35.0  MPa \end{aligned}

 

\begin{aligned}\sigma_{y} &=-p_{\max }\left(\frac{1+2 \frac{z^{2}}{b^{2}}}{\sqrt{1+\frac{z^{2}}{b^{2}}}}-2\left|\frac{z}{b}\right|\right)=-123.2\left(\frac{1+2\left(0.786^{2}\right)}{\sqrt{1+\left(0.786^{2}\right)}}-2(0.786)\right) \\&=-22.9  MPa \end{aligned}

 

\sigma_{z}=\frac{-p_{\max }}{\sqrt{1+\frac{z^{2}}{b^{2}}}}=\frac{-123.2}{\sqrt{1+0.786^{2}}}=-96.9  MPa

 

\tau_{\max }=\frac{\sigma_{y}-\sigma_{z}}{2}=\frac{-22.9-(-96.9)}{2}=37.0  MPa

 

 

______________________________________________________________________________________________________________

Eq. (3-73): b=\sqrt{\frac{2 F}{\pi l} \frac{\left(1-v_{1}^{2}\right) / E_{1}+\left(1-v_{2}^{2}\right) / E_{2}}{1 / d_{1}+1 / d_{2}}}

Eq. (3-74): p_{\max }=\frac{2 F}{\pi b l}

Eq. (3-75): \sigma_{x}=-2 v p_{\max }\left(\sqrt{1+\frac{z^{2}}{b^{2}}}-\left|\frac{z}{b}\right|\right)

Eq. (3-76): \sigma_{y}=-p_{\max }\left(\frac{1+2 \frac{z^{2}}{b^{2}}}{\sqrt{1+\frac{z^{2}}{b^{2}}}}-2\left|\frac{z}{b}\right|\right)

Eq. (3-77): \sigma_{3}=\sigma_{z}=\frac{-p_{\max }}{\sqrt{1+z^{2} / b^{2}}}

 

Related Answered Questions