Question 9.2: Analyzing a MOS differential pair with an active current sou...

Analyzing a MOS differential pair with an active current source The parameters of the MOS differential pair in Fig. 9.8 are R_{ SS }=50 k \Omega, I_{ Q }=10 mA , V_{ DD }=30 V , \text { and } R_{ D }=5 k \Omega . The NMOSs are identical and have K_{ n }=1.25 mA / V ^{2} \text { and } V_{ t }=1.0 V \text {. Assume } V_{ M }=100 V.

(a) Calculate the DC drain currents through the MOSFETs if v_{ id }=10 mV .
(b) Assuming I_{ D 1}=I_{ D 2} , calculate A_{ d }, A_{ c } , and CMRR; R_{ id } \text { and } R_{ ic } ; and the small-signal output voltage if v_{ g 1}=10 mV \text { and } v_{ g 2}=20 mV .
(c) Find the drain voltage V_{ D } .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) For v_{ id }=10 mV , Eq. (9.42) gives the DC drain current i_{ D 1} for transistor M _{1} as

 

i_{ D 1}=\frac{I_{ Q }}{2}+\sqrt{2 K_{ n } I_{ Q }}\left(\frac{v_{ id }}{2}\right)\left[1-\frac{\left(v_{ id } / 2\right)^{2}}{\left(I_{ Q } / 2 K_{ n }\right)}\right]^{1 / 2}                           (9.42)

 

\begin{aligned}&i_{ D 1}=\frac{10 m }{2}+2 \overline{2 \times 1.25 m \times 10 m } \times\left(\frac{10 m }{2}\right)\left[1-\frac{(10 m / 2)^{2}}{10 m /(2 \times 1.25 m )}\right]^{1 / 2}=5.25 mA \\&i_{ D 2}=I_{ D }-i_{ D 1}=10 mA -5.25 mA =4.75 mA\end{aligned}

 

(b) We know that I_{ D 1}=I_{ D 2}=I_{ Q } / 2=10 mA / 2=5 mA . From Eq. (9.54),

 

g_{ m }=2 K_{ n }\left(V_{ GS }-V_{ t }\right) =2 \overline{2 K_{ n } I_{ Q }}                             (9.54)

 

g_{ m }=2 \overline{2 \times K_{ n } I_{ Q }}=2 \overline{2 \times 1.25 m \times 10 m }=5 mA / V

 

r_{ ol }=\frac{V_{ M }}{I_{ D }}=\frac{100}{5 m }=20 k \Omega

 

From Eq. (9.55), the single-ended differential voltage gain A_{ d } is

 

A_{ d }=\frac{v_{ od } / 2}{v_{ id } / 2}=-g_{ m }\left(r_{ ol } \| R_{ D }\right)                                (9.55)

 

A_{ d }=-g_{ m }\left(R_{ D } \| r_{ ol }\right)=-5 m \times(5 k \| 20 k )=-20 V / V

 

From Eq. (9.57), the single-ended common-mode voltage gain A_{ c } is

A_{ c }=\frac{v_{ oc }}{v_{ ic }}=\frac{-g_{ m } R_{ D }}{1+g_{ m } 2 R_{ SS }}                        (9.57)

 

A_{ c }=\frac{-g_{ m } R_{ D }}{1+g_{ m } 2 R_{ SS }}=\frac{-5 m \times 5 k }{1+5 m \times 2 \times 50 k }=-0.0399 V / V

 

Thus, \text { CMRR }=\left|A_{ d } / A_{ c }\right|=20 / 0.0399=501(\text { or } 54 dB ) .

From Eq. (9.59),

R_{ ic }=R_{ id }=\infty                                (9.59)

 

R_{ id }=R_{ ic }=\infty

 

We know that

v_{ id }=v_{ g 2}-v_{ g 1}=20 mV -10 mV =10 mV

 

and          v_{ ic }=\frac{v_{ g 1}+v_{ g 2}}{2}=\frac{10 mV +20 mV }{2}=15 mV

 

Using Eq. (9.10), we have

\begin{aligned}v_{0} &=A_{1}\left(v_{ ic }+\frac{v_{ id }}{2}\right)+A_{2}\left(v_{ ic }-\frac{v_{ id }}{2}\right) \\&=\left(\frac{A_{1}-A_{2}}{2}\right) v_{ id }+\left(A_{1}+A_{2}\right) v_{ ic } \\&=A_{ d } v_{ id }+A_{ c } v_{ ic }\end{aligned}                                 (9.10)

 

v_{ o }=A_{ d } v_{ id }+A_{ c } v_{ ic }=-20 \times 10 mV -0.0399 \times 15 mV =-201 mV

 

(c) The DC drain voltage at the drain terminal of a transistor is

V_{ D }=V_{ DD }-I_{ D } R_{ D }=30 V -5 mA \times 5 k \Omega=5 V

 

Thus, for A_{ d }=-20, the maximum differential voltage will be v_{ id }=5 / 20=250 mV . Therefore, V_{ DD } must be greater than I_{ D } R_{ D } in order to allow output voltage swing due to the input voltages.

Related Answered Questions