Analyzing an NMOS differential pair with an active current source Repeat Example 9.2 if the transistor current source is replaced by the resistance R_{ SS }=50 k \Omega ; \text { that is, } I_{ SS }=0 . \text { Assume } V_{ M }=100 V .
Analyzing an NMOS differential pair with an active current source Repeat Example 9.2 if the transistor current source is replaced by the resistance R_{ SS }=50 k \Omega ; \text { that is, } I_{ SS }=0 . \text { Assume } V_{ M }=100 V .
(a) The DC drain current and the gate–source voltage of the MOSFETs can be determined from the DC commonmode half circuit for v_{ g 1}=v_{ g 2}=0 , shown in Fig. 9.12:
V_{ GS }+2 I_{ D } R_{ SS }=V_{ SS }
Substituting i_{ D }=I_{ D } \text { and } v_{ GS }=V_{ GS } from Eq. (9.37) into the preceding equation, we get
i_{ D }=K_{ n }\left(v_{ GS }-V_{ t }\right)^{2} (9.37)
V_{ GS }+2 R_{ SS } K_{ n }\left(V_{ GS }-V_{ t }\right)^{2}=V_{ SS }
Substituting the values, we get
V_{ GS }+2 \times 50 k \times\left(V_{ GS }-1\right)^{2}=15
This quadratic equation yields the solution for the gate–source voltage V_{ GS }=1.478 V , \text { or } 0.514 V . Since V_{ GS }>V_{ t }, the acceptable value is V_{ GS }=1.478 V which gives the drain current as
I_{ D 1}=K_{ n }\left(V_{ GS }-V_{ t }\right)^{2}=1.25 m \times(1.478-1)^{2}=285.6 \mu A
Therefore, the voltage at the source with respect to the ground is
V_{ SR }=-V_{ GS }=-1.478 V \quad \text { and } I_{ Q }=2 I_{ D }=2 \times 285.6 \mu=571.2 \mu A
(b) From Eq. (9.54),
\begin{aligned}g_{ m } &=2 K_{ n }\left(V_{ GS }-V_{ t }\right) \\&=2 \overline{2 K_{ n } I_{ Q }}\end{aligned} (9.54)
\begin{aligned}&g_{ m }=2 \overline{2 K_{ n } I_{ Q }}=2 \overline{2 \times 1.25 m \times 571.2 \mu}=1.194 mA / V \\&r_{ o 1}=\frac{V_{ M }}{I_{ D }}=\frac{100}{285.6 \mu}=350 k \Omega\end{aligned}
From Eq. (9.55),
A_{ d }=\frac{v_{ od } / 2}{v_{ id } / 2}=-g_{ m }\left(r_{ o 1} \| R_{ D }\right) (9.55)
A_{ d }=-g_{ m }\left(R_{ D } \| r_{ o1 }\right)=-1.194 m \times(5 k \| 350 k )=-5.89 V / V
From Eq. (9.57),
A_{ c }=\frac{v_{ oc }}{v_{ ic }}=\frac{-g_{ m } R_{ D }}{1+g_{ m } 2 R_{ SS }} (9.57)
A_{ c }=\frac{-g_{ m } R_{ D }}{1+g_{ m } \times 2 R_{ SS }}=\frac{-1.194 m \times 5 k }{1+1.194 m \times 2 \times 50 k }=-0.0489
Thus, CMRR =\left|A_{ d } / A_{ c }\right|=5.89 / 0.0489=120.4, \text { or } 41.61 dB . From Eq. (9.59),
R_{ ic }=R_{ id }=\infty (9.59)
R_{ id }=R_{ ic }=\infty
We know that
\begin{aligned}&v_{ id }=v_{ g 2}-v_{ g 1}=20 mV -10 mV =10 mV \\&v_{ ic }=\frac{v_{ g 1}+v_{ g 2}}{2}=\frac{10 mV +20 mV }{2}=15 mV\end{aligned}
Using Eq. (9.10), we have
A_{ d } v_{ id }+A_{ c } v_{ ic } (9.10)
v_{ o }=A_{ d } v_{ id }+A_{ c } v_{ ic }=-5.887 \times 10 mV -0.489 \times 15 mV =-59.6 mV
Thus, the output voltage and the voltage gain are much lower than with current-source biasing because the biasing current is low.