L=0.6 m , F_{a}=2 kN , n=1.5, N=10^{4} \text { cycles, } S_{u t}=770 MPa , S_{y}=420 MPa (Table A-20)
First evaluate the fatigue strength.

\begin{aligned}&S_{e}^{\prime}=0.5(770)=385 MPa \\&k_{a}=57.7(770)^{-0.718}=0.488\end{aligned}
Since the size is not yet known, assume a typical value of k_{b} = 0.85 and check later. All other modifiers are equal to one.
Eq. (6-18): S_{e}=0.488(0.85)(385)=160 MPa
In kpsi, S_{u t}=770 / 6.89=112 kpsi
Fig. 6-18: f = 0.83
Eq. (6-14): a=\frac{\left(f S_{u t}\right)^{2}}{S_{e}}=\frac{[0.83(770)]^{2}}{160}=2553 MPa
Eq. (6-15): b=-\frac{1}{3} \log \left(\frac{f S_{u t}}{S_{e}}\right)=-\frac{1}{3} \log \left(\frac{0.83(770)}{160}\right)=-0.2005
Eq. (6-13): S_{f}=a N^{b}=2553\left(10^{4}\right)^{-0.2005}=403 MPa
Now evaluate the stress.
\begin{aligned}&M_{\max }=(2000 N )(0.6 m )=1200 N \cdot m \\&\sigma_{a}=\sigma_{\max }=\frac{M c}{I}=\frac{M(b / 2)}{b\left(b^{3}\right) / 12}=\frac{6 M}{b^{3}}=\frac{6(1200)}{b^{3}}=\frac{7200}{b^{3}} Pa , \text { with } b \text { in } m .\end{aligned}
Compare strength to stress and solve for the necessary b.
\begin{aligned}&n=\frac{S_{f}}{\sigma_{a}}=\frac{403\left(10^{6}\right)}{7200 / b^{3}}=1.5 \\&b=0.0299 m \quad \text { Select } b=30 mm .\end{aligned}
Since the size factor was guessed, go back and check it now.
Eq. (6-25): d_{e}=0.808(h b)^{1 / 2}=0.808 b=0.808(30)=24.24 mm
Eq. (6-20): k_{b}=\left(\frac{24.2}{7.62}\right)^{-0.107}=0.88
Our guess of 0.85 was slightly conservative, so we will accept the result of
b = 30 mm.
Checking yield,
\begin{aligned}&\sigma_{\max }=\frac{7200}{0.030^{3}}\left(10^{-6}\right)=267 MPa \\&n_{y}=\frac{S_{y}}{\sigma_{\max }}=\frac{420}{267}=1.57\end{aligned}

___________________________________________________________________________________________________________
Eq. (6-13): S_{f}=a N^{b}
Eq. (6-14): a=\frac{\left(f S_{u t}\right)^{2}}{S_{e}}
Eq. (6-15): b=-\frac{1}{3} \log \left(\frac{f S_{u t}}{S_{e}}\right)
Eq. (6-18): S_{e}=k_{a} k_{b} k_{c} k_{d} k_{e} k_{f} S_{e}^{\prime}
Eq. (6-20): k_{b}= \begin{cases}(d / 0.3)^{-0.107}=0.879 d^{-0.107} & 0.11 \leq d \leq 2 \text { in } \\ 0.91 d^{-0.157} & 2<d \leq 10 \text { in } \\ (d / 7.62)^{-0.107}=1.24 d^{-0.107} & 2.79 \leq d \leq 51 mm \\ 1.51 d^{-0.157} & 51<d \leq 254 mm \end{cases}
Eq. (6-25): d_{e}=0.808(h b)^{1 / 2}