Question 6.13: A solid square rod is cantilevered at one end. The rod is 0....

A solid square rod is cantilevered at one end. The rod is 0.6 m long and supports a completely reversing transverse load at the other end of ±2 kN. The material is AISI 1080 hot-rolled steel. If the rod must support this load for 10^{4} cycles with a factor of safety of 1.5, what dimension should the square cross section have? Neglect any stress concentrations at the support end.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

L=0.6  m , F_{a}=2  kN , n=1.5, N=10^{4} \text { cycles, } S_{u t}=770  MPa , S_{y}=420  MPa  (Table A-20)

First evaluate the fatigue strength.

\begin{aligned}&S_{e}^{\prime}=0.5(770)=385  MPa \\&k_{a}=57.7(770)^{-0.718}=0.488\end{aligned}

Since the size is not yet known, assume a typical value of k_{b} = 0.85 and check later. All other modifiers are equal to one.

Eq. (6-18):              S_{e}=0.488(0.85)(385)=160  MPa

In kpsi,                    S_{u t}=770 / 6.89=112  kpsi

Fig. 6-18:                f = 0.83

Eq. (6-14):              a=\frac{\left(f S_{u t}\right)^{2}}{S_{e}}=\frac{[0.83(770)]^{2}}{160}=2553  MPa

Eq. (6-15):             b=-\frac{1}{3} \log \left(\frac{f S_{u t}}{S_{e}}\right)=-\frac{1}{3} \log \left(\frac{0.83(770)}{160}\right)=-0.2005

Eq. (6-13):             S_{f}=a N^{b}=2553\left(10^{4}\right)^{-0.2005}=403  MPa

Now evaluate the stress.

\begin{aligned}&M_{\max }=(2000  N )(0.6  m )=1200  N \cdot m \\&\sigma_{a}=\sigma_{\max }=\frac{M c}{I}=\frac{M(b / 2)}{b\left(b^{3}\right) / 12}=\frac{6 M}{b^{3}}=\frac{6(1200)}{b^{3}}=\frac{7200}{b^{3}} Pa , \text { with } b \text { in } m .\end{aligned}

Compare strength to stress and solve for the necessary b.

\begin{aligned}&n=\frac{S_{f}}{\sigma_{a}}=\frac{403\left(10^{6}\right)}{7200 / b^{3}}=1.5 \\&b=0.0299  m \quad \text { Select } b=30  mm .\end{aligned}

Since the size factor was guessed, go back and check it now.

Eq. (6-25):          d_{e}=0.808(h b)^{1 / 2}=0.808 b=0.808(30)=24.24  mm

Eq. (6-20):          k_{b}=\left(\frac{24.2}{7.62}\right)^{-0.107}=0.88

Our guess of 0.85 was slightly conservative, so we will accept the result of

b = 30 mm.

Checking yield,

\begin{aligned}&\sigma_{\max }=\frac{7200}{0.030^{3}}\left(10^{-6}\right)=267  MPa \\&n_{y}=\frac{S_{y}}{\sigma_{\max }}=\frac{420}{267}=1.57\end{aligned}

___________________________________________________________________________________________________________

Eq. (6-13):  S_{f}=a N^{b}

Eq. (6-14):  a=\frac{\left(f S_{u t}\right)^{2}}{S_{e}}

Eq. (6-15):  b=-\frac{1}{3} \log \left(\frac{f S_{u t}}{S_{e}}\right)

Eq. (6-18): S_{e}=k_{a} k_{b} k_{c} k_{d} k_{e} k_{f} S_{e}^{\prime}

Eq. (6-20): k_{b}= \begin{cases}(d / 0.3)^{-0.107}=0.879 d^{-0.107} & 0.11 \leq d \leq 2 \text { in } \\ 0.91 d^{-0.157} & 2<d \leq 10 \text { in } \\ (d / 7.62)^{-0.107}=1.24 d^{-0.107} & 2.79 \leq d \leq 51 mm \\ 1.51 d^{-0.157} & 51<d \leq 254 mm \end{cases}

Eq. (6-25): d_{e}=0.808(h b)^{1 / 2}

 

 

Related Answered Questions