Question 9.9: Designing a simple modified basic current source (a) Design ...

Designing a simple modified basic current source

(a) Design the modified basic current source in Fig. 9.27(a) to give an output current of I_{ O }=5 \mu A . The transistor parameters are \beta_{ F }=100, V_{ CC }=30 V , V_{ BE 1}=V_{ BE 2}=V_{ BE 3}=0.7 V , \text { and } V_{ A }=150 V .

(b) Calculate the output resistance R_{ O } , Thevenin’s equivalent voltage V_{ Th } , and the collector current ratio if V_{ CE 2}=20 V .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

I_{ O }=I_{ C 2}=5 \mu A , V_{ BE 1}=V_{ BE 2}=V_{ BE 3}=V_{ CE 1}=0.7 V , \text { and } V_{ A }=150 V .

(a) From Eq. (9.92),

 

I_{ O }=I_{ C 2}=\frac{I_{ R }}{1+2 /\left(\beta_{ F }^{2}+\beta_{ F }\right)}                                   (9.92)

 

I_{ O }=I_{ C 2}=\frac{I_{ R }}{1+2 /\left(\beta_{ F }^{2}+\beta_{ F }\right)}

 

which, for I_{ O }=5 \mu A , \text { gives } I_{ R }=(5 \mu A )\left[1+2 /\left(\beta_{ F }^{2}+\beta_{ F }\right)\right]=5 \mu A . From Eq. (9.93),

 

I_{ R }=\frac{V_{ CC }-V_{ BE 1}-V_{ BE 3}}{R_{1}}                                    (9.93)

 

R_{1}=\frac{V_{ CC }-V_{ BE 1}-V_{ BE 3}}{I_{ R }}=\frac{30-0.7-0.7}{5 \mu A }

 

which gives the required value of the resistor as R_{1}=5.72 M \Omega .

(b) From Eq. (9.94),

R_{ o }=\frac{v_{ x }}{i_{ x }}=r_{ o 2}=\frac{V_{ A }}{I_{ C 2}}                                (9.94)

 

R_{ o }=\frac{V_{ A }}{I_{ C 2}}=\frac{150}{5 \mu A }=30 M \Omega

 

From Eq. (9.95),

V_{ Th }=I_{ O } R_{ o }=I_{ C 2} R_{ o }=I_{ C 2} \frac{V_{ A }}{I_{ C 2}}=V_{ A }                                   (9.95)

 

V_{ Th }=V_{ A }=150 V

 

From Eq. (9.86),

\frac{I_{ C 2}}{I_{ C 1}}=\frac{1+V_{ CE 2} / V_{ A }}{1+V_{ CE 1} / V_{ A }}                                   (9.86)

 

\frac{I_{ C 2}}{I_{ C 1}}=\frac{1+V_{ CE 2} / V_{ A }}{1+\left(V_{ BE 1}+V_{ BE 3}\right) / V_{ A }}=\frac{1+20 / 150}{1+(0.7+0.7) / 150}=1.123

 

Neglecting I_{ B 3} \text {, we have } I_{ C 1} \approx I_{ O }=5 \mu A \text {. Thus, } I_{ C 2}=1.123 \times I_{ C 1}=1.123 \times 5 \mu A =5.62 \mu A , which agrees, with a degree of error, with the desired value of I_{ O }=5 \mu A .

Related Answered Questions