Question 9.10: Designing a Widlar current source (a) Design the Widlar curr...

Designing a Widlar current source

(a) Design the Widlar current source in Fig. 9.28(a) to give I_{ O }=5 \mu A \text { and } I_{ R }=1 mA .. The parameters are V_{ CC }=30 V , V_{ BE 1}=0.7 V , V_{ T }=26 mV , V_{ A }=150 V , \text { and } \beta_{ F }=100 .

(b) Calculate the output resistance R_{ o } and Thevenin’s voltage V_{\text {Th }} \text {. Assume } V_{ T }=26 mV \text {. }

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

I_{ C 2}=5 \mu A , \text { and } V_{ T }=26 mV .

(a) From Eq. (9.99),

I_{ R }=\frac{V_{ CC }-V_{ BE 1}}{R_{1}}                               (9.99)

 

1 mA =\frac{30-0.7}{R_{1}}

 

so  R_{1}=29.3 k \Omega .From Eq. (9.100),

 

\begin{aligned}I_{ R } &=I_{ C 1}+I_{ B 1}+I_{ B 2} \\&=I_{ C 1}\left(1+\frac{1}{\beta_{ F }}\right)+\frac{I_{ C 2}}{\beta_{ F }}\end{aligned}                                 (9.100)

 

1 mA =I_{ Cl }\left(1+\frac{1}{100}\right)+\frac{5 \mu A }{100}

 

which gives I_{ Cl } \approx 990 \mu A . From Eq. (9.98),

V_{ T } \ln \left(\frac{I_{ C 1}}{I_{ C 2}}\right)=I_{ C 2} R_{2}                                       (9.98)

 

26 mV \times \ln \left(\frac{990 \mu A }{5 \mu A }\right)=5 \mu A \times R_{2}

 

so  R_{2}=27.5 k \Omega.

 

(b) r_{ o 2}=V_{ A } / I_{ C 2}=150 /(5 \mu A )=30 M \Omega . From Eq. (9.110),

r_{\pi 2}=\frac{\beta_{ F }}{g_{ m 2}}=\frac{\beta_{ F }}{I_{ C 2} / V_{ T }}=V_{ T } \frac{\beta_{ F }}{I_{ C 2}}=\beta_{ F } \frac{V_{ T }}{I_{ C 1}} \times \frac{I_{ C 1}}{I_{ C 2}}=\frac{\beta_{ F }}{g_{ m 1}} \times \frac{I_{ C 1}}{I_{ C 2}}                            (9.110)

 

r_{\pi 2}=\frac{V_{ T } \beta_{ F }}{I_{ C 2}}=26 m \times \frac{100}{5 \mu}=520 k \Omega

 

Also from Eq. (9.109),

\frac{1}{g_{ m 1}}=\frac{1}{I_{ C 1} / V_{ T }}=\frac{V_{ T }}{I_{ C 1}}                              (9.109)

 

g_{ m 2}=\frac{I_{ C 2}}{V_{ T }}=\frac{5 \mu A }{26 mV }=192.3 \mu A / V

 

From Eq. (9.112),

R_{ o } \approx r_{ o 2}\left[1+g_{ m 2}\left(R_{2} \| r_{\pi 2}\right)\right]                              (9.112)

 

R_{ o } \approx 30 M \Omega \times[1+192.3 \mu A / V \times(27.5 k \Omega \| 520 k \Omega)]=180.68 M \Omega

 

Using the approximation in Eq. (9.115), we have

 

\begin{aligned}R_{ o } & \approx r_{ o 2}\left(1+g_{ m 2} R_{2}\right) \\& \approx r_{ o 2}\left(1+\frac{I_{ C 2} R_{2}}{V_{ T }}\right)\end{aligned}                           (9.115)

 

R_{ o } \approx 30 M \Omega \times\left(1+\frac{5 \mu A \times 27.5 k \Omega}{26 mV }\right)=188.66 M \Omega

 

and      V_{ Th }=R_{ o } I_{ C 2}=188.65 M \Omega \times 5 \mu A =943.3 V

 

NOTE: The Widlar current source gives a low output current at high output resistance, and Thevenin’s equivalent voltage is very high.

Related Answered Questions