I_{ C 2}=5 \mu A , \text { and } V_{ T }=26 mV.
(a) From Eq. (9.120),
I_{ O }=I_{ C 2}-I_{ R }\left[\frac{\left(2+\beta_{ F }\right) \beta_{ F }}{\beta_{ F }^{2}+2 \beta_{ F }+2}\right]-I_{ R }\left[1-\frac{2}{\beta_{ F }^{2}+2 \beta_{ F }+2}\right] (9.120)
5 \mu A =I_{ R }\left[1-\frac{2}{\left(100^{2}+2 \times 100+2\right)}\right]
so I_{ R } \approx 5 \mu A . The reference current is
I_{ R }=\frac{V_{ CC }-V_{ BE 1}-V_{ BE 2}}{R_{1}}
That is,
5 \mu A =\frac{30-0.7-0.7}{R_{1}}
which gives R_{1}=5.72 M \Omega.
(b) From Eq. (9.118),
I_{ C 3}=I_{ C 2} \frac{1+\beta_{ F }}{2+\beta_{ F }} (9.118)
I_{ C 3}=I_{ C 1}=\frac{5 \mu A \times(1+100)}{2+100}=4.95 \mu A
Then r_{ ol }=r_{ o 3}=\frac{V_{ A }}{I_{ C 1}}=\frac{150}{4.95 \mu}=30.3 M \Omega
r_{ o 2}=\frac{V_{ A }}{I_{ C 2}}=\frac{150}{5 \mu}=30 M \Omega
Since 1 / g_{ m 1}=1 / g_{ m 3}=V_{ T } / I_{ C 1}=26 mV / 4.95 \mu A =5.25 k \Omega,
g_{ m 1}=g_{ m 3}=190.4 \mu A / V
Since 1 / g_{ m 2}=26 mV / 5 \mu A =5.2 k \Omega,
g_{ m 2}=192.3 \mu A / V
Then r_{\pi 1}=r_{\pi 3}=\frac{\beta_{ F }}{g_{ m 1}}=100 \times 5.25 k =525 k \Omega
r_{\pi 2}=100 \times 5.2 k =520 k \Omega
From Eq. (9.124),
R_{ e }^{\prime}=\frac{v_{1}}{i}=\frac{r_{\pi 2}+\left(r_{ ol } \| R_{1}\right)}{1+\left(r_{ ol } \| R_{1}\right) g_{ m 1}} (9.124)
\begin{aligned}R_{ e }^{\prime} &=\frac{520 k \Omega+(30.3 M \Omega \| 5.72 M \Omega)}{[1+(30.3 M \Omega \| 5.72 M \Omega) \times 190.4 \mu A / V ]} \\&=5.81 k \Omega\end{aligned}
From Eq. (9.123),
R_{3}=r_{\pi 1}\left\|r_{\pi 3}\right\| \frac{1}{g_{ m 3}} \| r_{ o 3} \approx \frac{1}{g_{ m 3}} (9.123)
R_{3}=525 k \|525 k \| 5.25 k \| 30 M \approx 5.15 k \Omega
From Eq. (9.126),
R_{ o } \approx r_{ o 2}\left[1+\frac{g_{ m 2} r_{\pi 2}}{R_{ e }^{\prime}}\left(R_{3} \| R_{ e }^{\prime}\right)\right] (9.126)
R_{ o }=(30 M )\left[1+\frac{192.3 \mu \times 520 k }{5.81 k } \times 5.15 k \| 5.81 k \right]=1.44 G \Omega
and V_{\text {Th }}=1.44 G \times 5 \mu=7.2 kV
NOTE: If we use Eq. (9.127),
\begin{aligned}R_{ o } & \approx r_{ o 2}\left(1+\frac{g_{ m 2} r_{\pi 2}}{2}\right) \\& \approx r_{ o 2}\left(1+\frac{\beta_{ F }}{2}\right)\end{aligned} (9.127)
R_{ o } \approx(30 M )\left(1+\frac{100}{2}\right)=1.53 G \Omega
(c) The Wilson current source for PSpice simulation is shown in Fig. 9.31. We will use parametric sweep for the model parameter βF of the transistors. The voltage source V_{ y } acts as an ammeter for the output current.
The results of simulation (.TF analysis) are as follows. (The hand calculations are shown in parentheses.)
For \beta_{ F }=100, the simulation gives
VOLTAGE SOURCE CURRENTS
NAME CURRENT
VCC -5.022E-06
\begin{array}{lll}VX & 5.022 E -06 & \left(I_{ R }=5 \mu A \right) \\VY & 5.006 E -06 & \left(I_{ R }=5 \mu A \right) \\VCE & -5.006 E -06 &\end{array}
**** BIPOLAR JUNCTION TRANSISTORS
\begin{array}{lllll}\text { NAME } & \text { Q1 } & \text { Q2 } & \text { Q3 } & \\\text { IB } & 4.95 E -08 & 4.73 E -08 & 4.95 E -08 & \\\text { IC } & 4.98 E -06 & 5.01 E -06 & 4.95 E -06 & \\\text { VBE } & 6.37 E -01 & 6.36 E -01 & 6.37 E -01 & \\\text { VBC } & -6.36 E -01 & -8.73 E +00 & 0.00 E +00 & \\\text { VCE } & 1.27 E +00 & 9.36 E +00 & 6.37 E -01 & \\\text { BETADC } & 1.00 E +02 & 1.06 E +02 & 1.00 E +02 & \\\text { GM } & 1.92 E -04 & 1.94 E -04 & 1.92 E -04 & \\\text { RPI } & 5.22 E +05 & 5.47 E +05 & 5.22 E +05 & \left(r_{\pi 1}=525 k \Omega, r_{\pi 2}=520 k \Omega, r_{\pi 3}=525 k \Omega\right) \\\text { RO } & 3.03 E +07 & 3.17 E +07 & 3.03 E +07 & \left(r_{ ol }=30.3 M \Omega, r_{ o 2}=30 M \Omega, r_{ o 3}=30.3 M \Omega\right)\end{array}
**** SMALL-SIGNAL CHARACTERISTICS
\begin{array}{ll}\text { I (VY) /VCC=1.739E-07 } & \\\text { INPUT RESISTANCE AT VCC=5.730E+06 } & \left(R_{1}=5.72 M \Omega\right) \\\text { OUTPUT RESISTANCE AT I }(V Y)=1.602 E +09 & \left(R_{ o }=1.44 G \Omega\right)\end{array}
For \beta_{ F }=400, the simulation gives
\begin{aligned}&\text { I }(V Y) / V C C=1.738 E -07 \\&\text { INPUT RESISTANCE AT VCC=5.730E+06 } \\&\text { OUTPUT RESISTANCE AT I(VY)=5.441E+09 } \quad\left(R_{ O }=6.03 G \Omega\right)\end{aligned}
NOTE: R_{ o } changes from 1.602 E +09 \Omega\left(\text { for } \beta_{ F }=100\right) \text { to } 5.441 E +09 \Omega\left(\text { for } \beta_{ F }=400 \Omega\right) and depends on \beta_{ F } , as expected.