Question 9.13: Designing an emitter-coupled pair (a) Design an emitter-coup...

Designing an emitter-coupled pair

(a) Design an emitter-coupled pair as shown in Fig. 9.41 in which one input terminal is grounded. The output is taken from the collector of transistor Q_{1} . The biasing current is I_{ EE }=1 mA \text {, and } V_{ CC }=V_{ EE }=15 V . The transistors are identical. Assume V_{ BE }=0.7 V , V_{ T }=26 mV , V_{ A }=\infty, \text { and } \beta_{ F }=100 . A small-signal voltage gain of A_{1}=-250 V / V is required.

(b) Calculate the design values of A_{ d }, A_{ c } , and CMRR.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) I_{ EE }=1 mA \text {. Since } v_{ B 2}=0 , we can write

R_{ EE } I_{ EE }+V_{ BE }=V_{ EE }=15 V

Thus,

R_{ EE }=\frac{15-0.7}{1 m }=14.3 k \Omega

We have

i_{ Cl }=i_{ C 2}=\frac{I_{ EE }}{2}=\frac{1 mA }{2}=0.5 mA

and      g_{ m }=\frac{i_{ Cl }}{V_{ T }}=\frac{0.5 mA }{26 mV }=19.23 mA / V

 

Since    v_{ B 2}=V_{ B 2}+v_{ b 2}=0, v_{ b 2}=0. Then

v_{ id }=v_{ b 1}-v_{ b 2}=v_{ b 1}

 

and      v_{ ic }=\frac{v_{ b 1}+v_{ b 2}}{2}=\frac{v_{ b 1}}{2}

 

From Eq. (9.10), we get

v_o=A_{ d } v_{ id }+A_{ c } v_{ ic }                  (9.10)

 

v_{ ol }=A_{ c } v_{ ic }+\frac{A_{ d } v_{ id }}{2}=A_{ c } \frac{v_{ b 1}}{2}+\frac{A_{ d } v_{ b 1}}{2}=\frac{v_{ b 1}}{2}\left(A_{ c }+A_{ d }\right)                                         (9.151)

 

Substituting for A_{ d } \text { and } A_{ c } from Eqs. (9.141) and (9.146) gives the voltage gain A_{1} as

 

A_{ d }=\frac{v_{ od }}{v_{ id }}=-g_{ m } R_{ C }                                            (9.141)

 

\begin{aligned}A_{ c } =\frac{-g_{ m } R_{ C }}{1+2 g_{ m } R_{ EE }\left(1+1 / \beta_{ F }\right)}\end{aligned}                                                         (9.146)

 

A_{1}=\frac{v_{ o1}}{v_{ b 1}}=\frac{1}{2}\left(A_{ c }+A_{ d }\right)=-\frac{1}{2}\left[\frac{g_{ m } R_{ C }}{1+2 g_{ m } R_{ EE }\left(1+1 / \beta_{ F }\right)}+g_{ m } R_{ C }\right]                                     (9.152)

 

Substituting A_{1}=-250, g_{ m }=19.23 mA / V , R_{ EE }=14.3 k \Omega, \text { and } \beta_{ F }=100 into Eq. (9.152) gives R_{ C }=25.95 k \Omega .

(b) From Eq. (9.141),

A_{ d }=-g_{ m } R_{ C }=-19.23 m \times 25.95 k =-499.01

 

From Eq. (9.146),

A_{ c }=\frac{-19.23 mA / V \times 25.95 k \Omega}{1+2 \times 19.23 mA / V \times 14.3 k \Omega \times(1+1 / 100)}=-0.897

 

Thus, CMRR =\left|A_{ d } / A_{ c }\right|=499.01 / 0.897=556.3 \text { (or } 54.91 dB \text { ) } .

Related Answered Questions