Question 9.15: Analyzing BiCMOS amplifiers The DC biasing current of a BiCM...

Analyzing BiCMOS amplifiers The DC biasing current of a BiCMOS amplifier is kept constant at I_{ Q }=10 \mu A . All bipolar transistors are identical, with V_{ A }=50 V \text { and } \beta_{ F }=40 . Also, the MOS transistors are identical, with V_{ M }=20 V , K_{ n }=25 \mu A / V ^{2}, W=30 \mu m \text {, and } L=10 \mu m \text {. Assume } V_{ T }=25.8 mV .

Determine the differential voltage gain A_{ d } for single-ended output (a) for the BiCMOS amplifier in Fig. 9.49(c),
(b) for the cascode BiCMOS amplifier in Fig. 9.50, and (c) for the double-cascode BiCMOS amplifier in Fig. 9.51.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}&V_{ A }=50 V , \beta_{ F }=40, V_{ M }=20 V , K_{ n }=25 \mu A / V ^{2}, W=30 \mu m , L=10 \mu m , \text { and } I_{ D }=I_{ C }=I_{ Q } / 2= \\&10 \mu A / 2=5 \mu A .\end{aligned}

(a) We have

\begin{aligned}r_{ o 2} &=\frac{2 V_{ M }}{I_{ Q }}=\frac{2 \times 20 V }{10 \mu A }=4 M \Omega \\r_{ o 4} &=\frac{2 V_{ A }}{I_{ Q }}=\frac{2 \times 50 V }{10 \mu A }=10 M \Omega \\R_{ o } &=r_{ o 2}\left\|r_{ o 4} \equiv 4 M \Omega\right\| 10 M \Omega=2.86 M \Omega \\g_{ m 2} &=\sqrt{2 K_{ n } I_{ Q }}=\sqrt{2 \times 25 \mu \times 10 \mu}=22.36 \mu A / V\end{aligned}

 

Thus, the differential voltage becomes

A_{ d }=-g_{ m 2} R_{ o }=-22.36 \mu \times 2.86 M =-63.9

(b) We have

\begin{aligned}&r_{ o 4}=r_{ o 6}=\frac{2 V_{ A }}{I_{ Q }}=\frac{2 \times 50 V }{10 \mu A }=10 M \Omega \\&R_{ o }^{\prime}=\beta_{ F } r_{ o 6}=40 \times 10 M \Omega=400 M \Omega \\&R_{ o }=r_{ o 4}\left\|R_{ o }^{\prime}=10 M \right\| 400 M =10 M \Omega \\&g_{ m 2}=\sqrt{2 K_{ n } I_{ Q }}=\sqrt{2 \times 25 \mu \times 10 \mu}=22.36 \mu A / V\end{aligned}

 

Thus, the differential voltage becomes

A_{ d }=-g_{ m 2} R_{ o }=-22.36 \mu \times 10 M =-223.6 V / V

 

(c) From Eq. (9.187),

\begin{aligned}R_{ o } &=R_{ D }^{\prime}\left\|R_{ S }^{\prime}=\left(r_{ o 6} g_{ m 6} \beta_{ F 4} r_{ o 4}\right)\right\|\left(\beta_{ F 8} r_{ o 8}\right) \\&=\beta_{ F } r_{ o } \quad\left(\text { for } r_{ o 4}=r_{ o 8}=r_{ o }, \beta_{ F 8}=\beta_{ F }\right)\end{aligned}                           (9.187)

 

\begin{gathered}R_{ o }=\beta_{ F } r_{ o 4}=40 \times 10 M =400 M \Omega \\g_{ m 2}=\frac{I_{ Q }}{2 V_{ T }}=\frac{10 \mu A }{2 \times 25.8 mV }=193.8 \mu A / V\end{gathered}

 

Thus, the differential voltage gain becomes

A_{ d }=-g_{ m 2} R_{ o }=-193.8 \mu A / V \times 400 M \Omega=-77,520 V / V

which is considerably larger than for the other two configurations.

Related Answered Questions