Repeat Prob. 6–68, with the bar subject to a completely reversed torsional moment of 2000 lbf · in.
Repeat Prob. 6–68, with the bar subject to a completely reversed torsional moment of 2000 lbf · in.
From Prob. 6-68:
\begin{aligned}S _{e}^{\prime} &=23.2 L N (1,0.138) kpsi \\k _{a} &=0.644 L N (1,0.11) \\k_{b} &=0.936\end{aligned}Eq. (6-74): k _{c}=0.328(76)^{0.125} L N (1,0.125)=0.564 L N (1,0.125)
Eq. (6-71): S _{e}=[0.644 L N (1,0.11)](0.936)[0.564 L N (1,0.125)][23.2 L N (1,0.138)]
\begin{aligned}&\bar{S}_{e}=0.644(0.936)(0.564)(23.2)=7.89 kpsi \\&C_{S e}=\left(0.11^{2}+0.125^{2}+0.138^{3}\right)^{1 / 2}=0.216\end{aligned}Table A-16: d / D=0, a / D=(3 / 16) / 1.5=0.125, A=0.89, K _{t s}=1.64
From Eqs. (6-78) and(7-79), and Table 6-15
K _{f s}=\frac{1.64 L N (1,0.10)}{1+\frac{2(1.64-1)}{1.64} \frac{5 / 76}{\sqrt{3 / 32}}}=1.40 L N (1,0.10) \begin{aligned}J_{\text {net }} &=\frac{\pi A D^{4}}{32}=\frac{\pi(0.89)\left(1.5^{4}\right)}{32}=0.4423 in ^{4} \\\tau_{a} &= K _{f s} \frac{T_{a} D}{2 J_{\text {net }}}=1.40[ L N (1,0.10)] \frac{2(1.5)}{2(0.4423)}=4.75 L N (1,0.10) kpsi\end{aligned}From Eq. (6-57):
z=-\frac{\ln (7.89 / 4.75) \sqrt{\left(1+0.10^{2}\right) /\left(1+0.216^{2}\right)}}{\sqrt{\ln \left[\left(1+0.10^{2}\right)\left(1+0.216^{2}\right)\right]}}=-2.08Table A-10, p_{f}=0.0188, \quad R=1-p_{f}=1-0.0188=0.981
___________________________________________________________________________________________________________________
Eq. (6-57): \sum \frac{n_{i}}{N_{i}}=c
Eq. (6-71): S _{e}= k _{a} k_{b} k _{c} k _{d} k _{f} S _{e}^{\prime}
Eq. (6-74): \left( k _{c}\right)_{\text {torsion }}=0.328 \bar{S}_{u t}^{0.125} L N (1,0.125)
Eq. (6-78) : \bar{K}_{f}=\frac{K_{t}}{1+\frac{2\left(K_{t}-1\right)}{K_{t}} \frac{\sqrt{a}}{\sqrt{r}}}
Eq. (6-79) : K _{f}=\bar{K}_{f} L N \left(1, C_{K_{f}}\right)
Table 6–15 Heywood’s Parameter √a and coefficients of variation C_{K f} for steels |
Notch Type | \sqrt{ a }(\sqrt{\text { in }}) ,S_{\text {ut }} \text{in kpsi} | \sqrt{ a }(\sqrt{ m m }) , S_{\text {ut }} \text{in MPa} | Coefficient of Variation C_{K f} |
Transverse hole | 5 / S_{u t} | 174 / S_{u t} | 0.1 | |
Shoulder | 4 / S_{u t} | 139 / S_{u t} | 0.11 | |
Groove | 3 / S_{u t} | 104 / S_{u t} | 0.15 |