The coefficient of restitution between the two collars is known to be 0.70. Determine (a) their velocities after impact, (b) the energy loss during impact.
The coefficient of restitution between the two collars is known to be 0.70. Determine (a) their velocities after impact, (b) the energy loss during impact.
Impulse-momentum principle (collars A and B ):
\Sigma m \mathbf{v}_{1}+\Sigma \operatorname{\mathbf{Imp}}_{1 \rightarrow 2}=\Sigma m \mathbf{v}_{2}
Horizontal components \overset{+}{→}: \quad m_{A} \nu_{A}+m_{B} \nu_{B}=m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime}
Using data, \quad (5)(1)+(3)(-1.5)=5 \nu_{A}^{\prime}+3 \nu_{B}^{\prime}
or \quad 5 \nu_{A}^{\prime}+3 \nu_{B}^{\prime}=0.5 (1)
Apply coefficient of restitution.
\begin{aligned}& \nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right) \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=0.70[1-(-0.5)] \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=1.75 \quad\quad \text{(2)}\end{aligned}
(a) Solving Eqs. (1) and (2) simultaneously for the velocities,
\begin{gathered}\nu_{A}^{\prime}=-0.59375 \mathrm{~m} / \mathrm{s}\quad\quad \mathbf{v}_{A}=0.594 \mathrm{~m} /\mathrm{s}\longleftarrow \blacktriangleleft \\\nu_{B}^{\prime}=1.15625 \mathrm{~m} / \mathrm{s} \quad\quad \mathbf{v}_{B}=1.156 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft\end{gathered}
Kinetic energies: T_{1}=\frac{1}{2} m_{A} \nu_{A}^{2}+\frac{1}{2} m_{B} \nu_{B}^{2}=\frac{1}{2}(5)(1)^{2}+\frac{1}{2}(3)(-1.5)^{2}=5.875 \mathrm{~J}
T_{2}=\frac{1}{2} m_{A}\left(\nu_{A}^{\prime}\right)^{2}+\frac{1}{2} m_{B}\left(\nu_{B}^{\prime}\right)^{2}=\frac{1}{2}(5)(-0.59375)^{2}+\frac{1}{2}(3)(1.15625)^{2}=2.8867 \mathrm{~J}
(b) Energy loss: \quad\quad\quad\quad T_{1}-T_{2}=2.99 \mathrm{~J}\blacktriangleleft