Question 13.155: The coefficient of restitution between the two collars is kn...

The coefficient of restitution between the two collars is known to be 0.70. Determine (a) their velocities after impact, (b) the energy loss during impact.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Impulse-momentum principle (collars A and B ):

\Sigma m \mathbf{v}_{1}+\Sigma \operatorname{\mathbf{Imp}}_{1 \rightarrow 2}=\Sigma m \mathbf{v}_{2}

Horizontal components \overset{+}{→}: \quad m_{A} \nu_{A}+m_{B} \nu_{B}=m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime}

Using data, \quad (5)(1)+(3)(-1.5)=5 \nu_{A}^{\prime}+3 \nu_{B}^{\prime}

or \quad 5 \nu_{A}^{\prime}+3 \nu_{B}^{\prime}=0.5    (1)

Apply coefficient of restitution.

\begin{aligned}& \nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right) \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=0.70[1-(-0.5)] \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=1.75 \quad\quad \text{(2)}\end{aligned}

(a) Solving Eqs. (1) and (2) simultaneously for the velocities,

\begin{gathered}\nu_{A}^{\prime}=-0.59375 \mathrm{~m} / \mathrm{s}\quad\quad \mathbf{v}_{A}=0.594 \mathrm{~m} /\mathrm{s}\longleftarrow \blacktriangleleft \\\nu_{B}^{\prime}=1.15625 \mathrm{~m} / \mathrm{s} \quad\quad \mathbf{v}_{B}=1.156 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft\end{gathered}

Kinetic energies: T_{1}=\frac{1}{2} m_{A} \nu_{A}^{2}+\frac{1}{2} m_{B} \nu_{B}^{2}=\frac{1}{2}(5)(1)^{2}+\frac{1}{2}(3)(-1.5)^{2}=5.875 \mathrm{~J}

T_{2}=\frac{1}{2} m_{A}\left(\nu_{A}^{\prime}\right)^{2}+\frac{1}{2} m_{B}\left(\nu_{B}^{\prime}\right)^{2}=\frac{1}{2}(5)(-0.59375)^{2}+\frac{1}{2}(3)(1.15625)^{2}=2.8867 \mathrm{~J}

(b) Energy loss: \quad\quad\quad\quad T_{1}-T_{2}=2.99 \mathrm{~J}\blacktriangleleft

13.155.

Related Answered Questions