Collars A and B, of the same mass m, are moving toward each other with identical speeds as shown. Knowing that the coefficient of restitution between the collars is e, determine the energy lost in the impact as a function of m, e and ν.
Collars A and B, of the same mass m, are moving toward each other with identical speeds as shown. Knowing that the coefficient of restitution between the collars is e, determine the energy lost in the impact as a function of m, e and ν.
Impulse-momentum principle (collars A and B):
\Sigma m \mathbf{v}_{1}+\Sigma \mathbf{Imp}_{1 \rightarrow 2}=\Sigma m \mathbf{v}_{2}
Horizontal components \overset{+}{→}: m_{A} \nu_{A}+m_{B} \nu_{B}=m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime}
Using data, \quad m \nu+m(-ν)=m \nu_{A}^{\prime}+m \nu_{B}^{\prime}
or \quad\nu_{A}^{\prime}+\nu_{B}^{\prime}=0 (1)
Apply coefficient of restitution.
\begin{aligned}& \nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right) \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=e[\nu-(-\nu)] \\& \nu_{B}^{\prime}-\nu_{A}^{\prime}=2 e \nu & \text{(2)}\end{aligned}
Subtracting Eq. (1) from Eq. (2),
\begin{aligned}-2 \nu_{A} & =2 e \nu \\\nu_{A} & =-e \nu && \mathbf{v}_{A}=e \nu\longleftarrow\end{aligned}
Adding Eqs. (1) and (2),
\begin{aligned}2 \nu_{B} & =2 e \nu \\\nu_{B} & =e \nu && \mathbf{v}_B=e\nu\longrightarrow \end{aligned}
Kinetic energies:
T_{1}=\frac{1}{2} m_{A} \nu_{A}^{2}+\frac{1}{2} m_{B} \nu_{B}^{2}=\frac{1}{2} m \nu^{2}+\frac{1}{2} m(-\nu)^{2}=m \nu^{2}
T_{2}=\frac{1}{2} m_{A}\left(\nu_{A}^{\prime}\right)^{2}+\frac{1}{2} m_{B}\left(\nu_{B}^{\prime}\right)^{2}=\frac{1}{2} m(e \nu)^{2}+\frac{1}{2} m(e \nu)^{2}=e^{2} m \nu^{2}
Energy loss: \quad\quad\quad\quad\quad\quad T_{1}-T_{2}=\left(1-e^{2}\right) m \nu^{2}\blacktriangleleft