Question 13.162: At an amusement park there are 200-kg bumper cars A, B, and ...

At an amusement park there are 200-kg bumper cars A, B, and C that have riders with masses of 40 kg, 60 kg, and 35 kg respectively. Car A is moving to the right with a velocity \mathbf{ v }_{ A }=2 \ m/s and car C has a velocity \mathbf{ v }_{ B }=1.5 \ m/s to the left, but car B is initially at rest. The coefficient of restitution between each car is 0.8. Determine the final velocity of each car, after all impacts, assuming (a) cars A and C hit car B at the same time, (b) car A hits car B before car C does.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assume that each car with its rider may be treated as a particle. The masses are:

\begin{aligned}& m_{A}=200+40=240 \mathrm{~kg}, \\& m_{B}=200+60=260 \mathrm{~kg}, \\& m_{C}=200+35=235 \mathrm{~kg} .\end{aligned}

Assume velocities are positive to the right. The initial velocities are:

\nu_{A}=2 \mathrm{~m} / \mathrm{s} \quad \nu_{B}=0 \quad \nu_{C}=-1.5 \mathrm{~m} / \mathrm{s}

Let \nu_{A}^{\prime}, \nu_{B}^{\prime}, and \nu_{C}^{\prime} be the final velocities.

(a) Cars A and C hit B at the same time. Conservation of momentum for all three cars.

\begin{gathered}m_{A} \nu_{A}+m_{B} \nu_{B}+m_{C} \nu_{C}=m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime}+m_{C} \nu_{C}^{\prime} \\(240)(2)+0+(235)(-1.5)=240 \nu_{A}^{\prime}+260 \nu_{B}^{\prime}+235 \nu_{C}^{\prime}\quad\quad \text{(1)}\end{gathered}

Coefficient of restition for cars A and B.

\nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right)=(0.8)(2-0)=1.6    (2)

Coefficient of restitution for cars B and C.

\nu_{C}^{\prime}-\nu_{B}^{\prime}=e\left(\nu_{B}-\nu_{C}\right)=(0.8)[0-(-1.5)]=1.2    (3)

Solving Eqs. (1), (2), and (3) simultaneously,

\begin{array}{r}\nu_{A}^{\prime}=-1.288 \mathrm{~m} / \mathrm{s} \quad \nu_{B}^{\prime}=0.312 \mathrm{~m} / \mathrm{s} \quad \nu_{C}^{\prime}=1.512 \mathrm{~m} / \mathrm{s} \\\mathbf{v}_{A}^{\prime}=1.288 \mathrm{~m} / \mathrm{s} \longleftarrow\blacktriangleleft \\\mathbf{v}_{B}^{\prime}=0.312 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft \\\mathbf{v}_{C}^{\prime}=1.512 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft\end{array}

(b) Car A hits car B before C does.

First impact. Car A hits car B. Let \nu_{A}^{\prime} and \nu_{B}^{\prime} be the velocities after this impact. Conservation of momentum for cars A and B.

\begin{aligned}m_{A} \nu_{A}+m_{B} \nu_{B} & =m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime} \\(240)(2)+0 & =240 \nu_{A}^{\prime}+260 \nu_{B}^{\prime}\quad\quad\text{(4)}\end{aligned}

Coefficient of restitution for cars A and B.

\nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right)=(0.8)(2-0)=1.6   (5)

Solving Eqs. (4) and (5) simultaneously,

\begin{aligned}& \nu_{A}^{\prime}=0.128 \mathrm{~m} / \mathrm{s}, \quad \nu_{B}^{\prime}=1.728 \mathrm{~m} / \mathrm{s} \\& \mathbf{v}_{A}^{\prime}=0.128 \mathrm{~m} / \mathrm{s} \longrightarrow \\& \mathbf{v}_{B}^{\prime}=1.728 \mathrm{~m} / \mathrm{s} \longrightarrow\end{aligned}

Second impact. Cars B and C hit. Let \nu_{B}^{\prime \prime} and \nu_{C}^{\prime \prime} be the velocities after this impact. Conservation of momentum for cars B and C.

m_{B} \nu_{B}^{\prime}+m_{C} \nu_{C}=m_{B} \nu_{B}^{\prime \prime}+m_{C} \nu_{C}^{\prime \prime}

(260)(1.728)+(235)(-1.5)=260 \nu_{B}^{\prime \prime}+235 \nu_{C}^{\prime \prime}     (6)

Coefficient of restitution for cars B and C.

\nu_{C}^{\prime \prime}-\nu_{B}^{\prime \prime}=e\left(\nu_{B}^{\prime}-\nu_{C}\right)=(0.8)[1.728-(-1.5)]=2.5824    (7)

Solving Eqs. (6) and (7) simultaneously,

\begin{aligned}\nu_{B}^{\prime \prime} & =-1.03047 \mathrm{~m} / \mathrm{s} \quad \nu_{C}^{\prime \prime}=1.55193 \mathrm{~m} / \mathrm{s} \\\mathbf{v}_{B}^{\prime \prime} & =1.03047 \mathrm{~m} / \mathrm{s} \longleftarrow \\\mathbf{v}_{C}^{\prime \prime} & =1.55193 \mathrm{~m} / \mathrm{s} \longrightarrow\end{aligned}

Third impact. Cars A and B hit again. Let \nu_{A}^{\prime \prime \prime} and \nu_{B}^{\prime \prime \prime} be the velocities after this impact. Conservation of momentum for cars A and B.

m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime \prime}=m_{A} \nu_{A}^{\prime \prime \prime}+m_{B} \nu_{B}^{\prime \prime \prime}

(240)(0.128)+(260)(-1.03047)=240 \nu_{A}^{\prime \prime \prime}+260 \nu_{B}^{\prime \prime \prime}    (8)

Coefficient of restitution for cars A and B.

\nu_{B}^{\prime \prime \prime}-\nu_{A}^{\prime \prime \prime}=e\left(\nu_{A}^{\prime}-\nu_{B}^{\prime \prime}\right)=(0.8)[0.128-(-1.03047)]=0.926776      (9)

Solving Eqs. (8) and (9) simultaneously,

\begin{aligned}\nu_{A}^{\prime \prime \prime} & =-0.95633 \mathrm{~m} / \mathrm{s} \\\nu_{B}^{\prime \prime \prime} & =-0.02955 \mathrm{~m} / \mathrm{s} \\\mathbf{v}_{A}^{\prime \prime \prime} & =0.95633 \mathrm{~m} / \mathrm{s}\longleftarrow \\\mathbf{v}_{B}^{\prime \prime \prime} & =0.02955 \mathrm{~m} / \mathrm{s}\longleftarrow \end{aligned}

There are no more impacts. The final velocities are:

\begin{gathered}\mathbf{v}_{A}^{\prime \prime \prime}=0.956 \mathrm{~m} / \mathrm{s} \longleftarrow\blacktriangleleft \\\mathbf{v}_{B}^{\prime \prime \prime}=0.0296 \mathrm{~m} / \mathrm{s} \longleftarrow\blacktriangleleft \\\mathbf{v}_{C}^{\prime \prime}=1.552 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft\end{gathered}

We may check our results by considering conservation of momentum of all three cars over all three impacts.

\begin{aligned}m_{A} \nu_{A}+m_{B} \nu_{B}+m_{C} \nu_{C} & =(240)(2)+0+(235)(-1.5) \\& =127.5 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} \\m_{A} \nu_{A}^{\prime \prime \prime}+m_{B} \nu_{B}^{\prime \prime \prime}+m_{C} \nu_{C}^{\prime \prime} & =(240)(-0.95633)+(260)(-0.02955)+(235)(1.55193) \\& =127.50 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} .\end{aligned}

Related Answered Questions