Assume that each car with its rider may be treated as a particle. The masses are:
\begin{aligned}& m_{A}=200+40=240 \mathrm{~kg}, \\& m_{B}=200+60=260 \mathrm{~kg}, \\& m_{C}=200+35=235 \mathrm{~kg} .\end{aligned}
Assume velocities are positive to the right. The initial velocities are:
\nu_{A}=2 \mathrm{~m} / \mathrm{s} \quad \nu_{B}=0 \quad \nu_{C}=-1.5 \mathrm{~m} / \mathrm{s}
Let \nu_{A}^{\prime}, \nu_{B}^{\prime}, and \nu_{C}^{\prime} be the final velocities.
(a) Cars A and C hit B at the same time. Conservation of momentum for all three cars.
\begin{gathered}m_{A} \nu_{A}+m_{B} \nu_{B}+m_{C} \nu_{C}=m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime}+m_{C} \nu_{C}^{\prime} \\(240)(2)+0+(235)(-1.5)=240 \nu_{A}^{\prime}+260 \nu_{B}^{\prime}+235 \nu_{C}^{\prime}\quad\quad \text{(1)}\end{gathered}
Coefficient of restition for cars A and B.
\nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right)=(0.8)(2-0)=1.6 (2)
Coefficient of restitution for cars B and C.
\nu_{C}^{\prime}-\nu_{B}^{\prime}=e\left(\nu_{B}-\nu_{C}\right)=(0.8)[0-(-1.5)]=1.2 (3)
Solving Eqs. (1), (2), and (3) simultaneously,
\begin{array}{r}\nu_{A}^{\prime}=-1.288 \mathrm{~m} / \mathrm{s} \quad \nu_{B}^{\prime}=0.312 \mathrm{~m} / \mathrm{s} \quad \nu_{C}^{\prime}=1.512 \mathrm{~m} / \mathrm{s} \\\mathbf{v}_{A}^{\prime}=1.288 \mathrm{~m} / \mathrm{s} \longleftarrow\blacktriangleleft \\\mathbf{v}_{B}^{\prime}=0.312 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft \\\mathbf{v}_{C}^{\prime}=1.512 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft\end{array}
(b) Car A hits car B before C does.
First impact. Car A hits car B. Let \nu_{A}^{\prime} and \nu_{B}^{\prime} be the velocities after this impact. Conservation of momentum for cars A and B.
\begin{aligned}m_{A} \nu_{A}+m_{B} \nu_{B} & =m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime} \\(240)(2)+0 & =240 \nu_{A}^{\prime}+260 \nu_{B}^{\prime}\quad\quad\text{(4)}\end{aligned}
Coefficient of restitution for cars A and B.
\nu_{B}^{\prime}-\nu_{A}^{\prime}=e\left(\nu_{A}-\nu_{B}\right)=(0.8)(2-0)=1.6 (5)
Solving Eqs. (4) and (5) simultaneously,
\begin{aligned}& \nu_{A}^{\prime}=0.128 \mathrm{~m} / \mathrm{s}, \quad \nu_{B}^{\prime}=1.728 \mathrm{~m} / \mathrm{s} \\& \mathbf{v}_{A}^{\prime}=0.128 \mathrm{~m} / \mathrm{s} \longrightarrow \\& \mathbf{v}_{B}^{\prime}=1.728 \mathrm{~m} / \mathrm{s} \longrightarrow\end{aligned}
Second impact. Cars B and C hit. Let \nu_{B}^{\prime \prime} and \nu_{C}^{\prime \prime} be the velocities after this impact. Conservation of momentum for cars B and C.
m_{B} \nu_{B}^{\prime}+m_{C} \nu_{C}=m_{B} \nu_{B}^{\prime \prime}+m_{C} \nu_{C}^{\prime \prime}
(260)(1.728)+(235)(-1.5)=260 \nu_{B}^{\prime \prime}+235 \nu_{C}^{\prime \prime} (6)
Coefficient of restitution for cars B and C.
\nu_{C}^{\prime \prime}-\nu_{B}^{\prime \prime}=e\left(\nu_{B}^{\prime}-\nu_{C}\right)=(0.8)[1.728-(-1.5)]=2.5824 (7)
Solving Eqs. (6) and (7) simultaneously,
\begin{aligned}\nu_{B}^{\prime \prime} & =-1.03047 \mathrm{~m} / \mathrm{s} \quad \nu_{C}^{\prime \prime}=1.55193 \mathrm{~m} / \mathrm{s} \\\mathbf{v}_{B}^{\prime \prime} & =1.03047 \mathrm{~m} / \mathrm{s} \longleftarrow \\\mathbf{v}_{C}^{\prime \prime} & =1.55193 \mathrm{~m} / \mathrm{s} \longrightarrow\end{aligned}
Third impact. Cars A and B hit again. Let \nu_{A}^{\prime \prime \prime} and \nu_{B}^{\prime \prime \prime} be the velocities after this impact. Conservation of momentum for cars A and B.
m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime \prime}=m_{A} \nu_{A}^{\prime \prime \prime}+m_{B} \nu_{B}^{\prime \prime \prime}
(240)(0.128)+(260)(-1.03047)=240 \nu_{A}^{\prime \prime \prime}+260 \nu_{B}^{\prime \prime \prime} (8)
Coefficient of restitution for cars A and B.
\nu_{B}^{\prime \prime \prime}-\nu_{A}^{\prime \prime \prime}=e\left(\nu_{A}^{\prime}-\nu_{B}^{\prime \prime}\right)=(0.8)[0.128-(-1.03047)]=0.926776 (9)
Solving Eqs. (8) and (9) simultaneously,
\begin{aligned}\nu_{A}^{\prime \prime \prime} & =-0.95633 \mathrm{~m} / \mathrm{s} \\\nu_{B}^{\prime \prime \prime} & =-0.02955 \mathrm{~m} / \mathrm{s} \\\mathbf{v}_{A}^{\prime \prime \prime} & =0.95633 \mathrm{~m} / \mathrm{s}\longleftarrow \\\mathbf{v}_{B}^{\prime \prime \prime} & =0.02955 \mathrm{~m} / \mathrm{s}\longleftarrow \end{aligned}
There are no more impacts. The final velocities are:
\begin{gathered}\mathbf{v}_{A}^{\prime \prime \prime}=0.956 \mathrm{~m} / \mathrm{s} \longleftarrow\blacktriangleleft \\\mathbf{v}_{B}^{\prime \prime \prime}=0.0296 \mathrm{~m} / \mathrm{s} \longleftarrow\blacktriangleleft \\\mathbf{v}_{C}^{\prime \prime}=1.552 \mathrm{~m} / \mathrm{s} \longrightarrow\blacktriangleleft\end{gathered}
We may check our results by considering conservation of momentum of all three cars over all three impacts.
\begin{aligned}m_{A} \nu_{A}+m_{B} \nu_{B}+m_{C} \nu_{C} & =(240)(2)+0+(235)(-1.5) \\& =127.5 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} \\m_{A} \nu_{A}^{\prime \prime \prime}+m_{B} \nu_{B}^{\prime \prime \prime}+m_{C} \nu_{C}^{\prime \prime} & =(240)(-0.95633)+(260)(-0.02955)+(235)(1.55193) \\& =127.50 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} .\end{aligned}