Question 10.51: A vertical single cylinder engine has a cylinder diameter 30...

A vertical single cylinder engine has a cylinder diameter 300 mm, stroke length 500 mm, and connecting rod length 4.5 times the crank length. Engine runs at 180 rpm. The mass of reciprocating parts is 280 kg, compression ratio is 14, and the pressure remains constant during the injection of oil for 1/10th of the stroke. If the compression and expansion follow the law p V^{1.35}= constant, find:
(i) Crank pin effort, (ii) Thrust on the bearings, (iii) Turning moment on the crankshaft when the crank displacement is 45° from the I.D.C. position during expansion stroke. Suction pressure may be taken as 0.1 N/mm³.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given: } D=300 mm , L=500 mm , \text { or } r=250 mm , n=\frac{l}{r}=4.5, N=180 rpm , M_{r}=280 kg .

r_{c}=\frac{V_{1}}{V_{2}}=14, V_{3}-V_{2}=0.1 V_{s}=0.1\left(V_{1}-V_{2}\right), p_{1}=0.1 N / mm ^{2}, \theta=45^{\circ} .

The p-V diagram for the diesel engine is shown in Fig.10.37.

\text { Angular speed of engine, } \omega=\frac{2 \pi N}{60}=\frac{2 \pi \times 180}{60}=18.85 rad / s .

Process 1-2:    p_{1} V_{1}^{1.35}=p_{2} V_{2}^{1.35} .

p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)^{1.35}=0.1(14)^{1.35}=3.526 N / mm ^{2} .

\text { Swept volume, } V_{s}=\left(\frac{\pi}{4}\right) D^{2} L=\frac{\pi}{4} \times 300^{2} \times 500 \times 10^{-9}=0.035343 m ^{3} .

Now          \frac{V_{1}}{V_{2}}=\frac{V_{2}+V_{s}}{V_{2}} .

14=\frac{1+0.035343}{V_{2}} .

Also    p_{2}=p_{3} \text { and } V_{3}=V_{2}+0.1 V_{s}=0.00272+0.0035343=0.00625 m ^{3} .

The displacement of the piston for 45° crank rotation from I.D.C. during expansion stroke is indicated by point 5 in Fig.10.37.

x=r\left[(1-\cos \theta)+\left\{n-\left(n^{2}-\sin ^{2} \theta\right)^{0.5}\right\}\right] .

=250\left[\left(1-\cos 45^{\circ}\right)+\left\{4.5-\left(4.5^{2}-\sin ^{2} 45^{\circ}\right)^{0.5}\right\}\right] .

= 87.2 mm or 0.0872 m.

V_{5}=V_{2}+\left(\frac{\pi}{4}\right) D^{2} x=0.00272+\left(\frac{\pi}{4}\right) \times 300^{2} \times 87.2 \times 10^{-9} .

=0.0089 m ^{3} .

Process 3-5:

p_{3} V_{3}^{1.35}=p_{5} V_{5}^{1.35} .

p_{5}=p_{3}\left(\frac{V_{3}}{V_{5}}\right)^{1.35}=3.526\left(\frac{0.00625}{0.0089}\right)^{1.35}=3.188 N / mm ^{2} .

\text { Difference of pressure on two sides of the piston, } \Delta p=p_{5}-p_{1}=3.188-0.1=3.088 N / mm ^{2} .

Force on the piston due to gas pressure during outstroke,

F_{p}=\left(\frac{\pi}{4}\right) D^{2} \times \Delta p=\left(\frac{\pi}{4}\right) \times 300^{2} \times 3.088=147592 N .

\text { Inertia force due to the reciprocating parts, } F_{i}=M_{r} \omega^{2} r\left(\cos \theta+\frac{\cos 2 \theta}{n}\right) .

=280 \times(18.85)^{2} \times 0.25 \times\left(\cos 45^{\circ}+\frac{\cos 90^{\circ}}{4.5}\right) .

=17587.6 N.

Piston effort during down stroke of a vertical four-stroke diesel engine.

F=F_{p}-F_{i}+M_{r} g=147592-17587.6+280 \times 9.81=132751.2 N .

(i) Crank pin effort.
Angle of inclination of the connecting rod with the line of stroke,

\sin \phi=\frac{\sin \theta}{n}=\frac{\sin 45^{\circ}}{4.5}=0.15713 .

\phi=9.04^{\circ} .

CPE , F_{t}=F \times \frac{\sin (\theta+\phi)}{\cos \phi} .

=132751.2 \times \frac{\sin \left(45^{\circ}+9.04^{\circ}\right)}{\cos 9.04^{\circ}}

= 108803.9 N.

(ii) Thrust on bearings,

F_{r}=F \times \frac{\cos (\theta+\phi)}{\cos \phi} .

=132751.2 \times \frac{\left(45^{\circ}+9.04^{\circ}\right)}{\cos 0.94^{\circ}} .

= 78934.65 N.

(iii) Turning moment on the crankshaft or crank effort,

T=F_{t} \times r=108803.9 \times 0.25=27200.975 Nm .

10.37

Related Answered Questions