Question 14.2: Finding the effects of thermal drift on the output of an inv...

Finding the effects of thermal drift on the output of an inverting op-amp circuit The inverting amplifier in Fig. 14.5(a) has R_{1}=10 k \Omega, R_{ F }=100 k \Omega \text {, and } R_{ X }=R_{ F } \| R_{1}=9.091 k \Omega . The op-amp parameters are V_{ io }=\pm 6 mV , I_{ B }=500 nA , I_{ io }=\pm 200 nA \text {, and PSRR }=150 \mu V / V . The thermal drifts are D_{ v }= 15 \mu V /{ }^{\circ} C , D_{ i }=0.5 nA /^{\circ} C \text {, and } D_{ b }=0.5 nA /{ }^{\circ} C \text { at } 25^{\circ} C . The temperature is 55°C. The DC supply voltages change from V_{ CC }=15 V \text { to } 12 V \text { and }-V_{ EE }=-15 V \text { to }-12 V . The input voltage is v_{ S }=100 mV \text { (DC) } . Determine the output voltage v_{ O } \text { if (a) } R_{ X }=R_{ F } \| R_{1}=9.091 k \Omega \text { and (b) } R_{ x }=0 .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}&R_{1}=10 k \Omega, R_{ F }=100 k \Omega, V_{ io }=\pm 6 mV , I_{ B }=500 nA , I_{ io }=\pm 200 nA , D_{ v }=15 \mu V /{ }^{\circ} C , D_{ i }=0.5 nA /{ }^{\circ} C , \\&D_{ b }=0.5 nA /{ }^{\circ} C , \text { and } v_{ S }=100 mV . \text { Then }\end{aligned}

 

\begin{aligned}\Delta T &=55-25=30^{\circ} C \\\Delta V_{ DC } &=(15+15)-(12+12)=6 V \\\Delta V_{ io } &=D_{ v } \Delta T+ PSRR \Delta V_{ DC }=15 \times 10^{-6} \times 30+150 \times 10^{-6} \times 6=1.35 mV \\\Delta I_{ io } &=D_{ i } \Delta T=0.5 \times 10^{-9} \times 30=15 nA \\\Delta I_{ B } &=D_{ b } \Delta T=0.5 \times 10^{-9} \times 30=15 nA\end{aligned}

(a) With offset-minimizing resistance R_{ X } , the total output voltage of the inverting amplifier is given by

v_{ O }=-\frac{R_{ F }}{R_{1}} v_{ S } \pm\left(1+\frac{R_{ F }}{R_{1}}\right)\left(V_{ io }+\Delta V_{ io }\right) \pm R_{ F }\left(I_{ io }+\Delta I_{ io }\right)                                                       (14.25)

 

\begin{aligned}=&-\left(\frac{100 k \Omega}{10 k \Omega}\right) \times 100 \times 10^{-3} \pm\left(1+\frac{100 k \Omega}{10 k \Omega}\right) \times(6+1.35) \times 10^{-3} \\& \pm 100 \times 10^{3} \times(200+15) \times 10^{-9} \\=&-1000 mV \pm 80.85 mV \pm 21.5 mV \\=&-1102.35 mV ( min ) \text { or }-897.65 mV ( max )\end{aligned}

 

(b) With R_{ x }=0 , the total output voltage of the inverting amplifier is given by

v_{ O }=-\frac{R_{ F }}{R_{1}} v_{ S } \pm\left(1+\frac{R_{ F }}{R_{1}}\right)\left(V_{ io }+\Delta V_{ io }\right)+R_{ F }\left(I_{ B }+\Delta I_{ B }\right)                                         (14.26)

 

\begin{aligned}=&-\left(\frac{100 k \Omega}{10 k \Omega}\right) \times 100 \times 10^{-3} \pm\left(1+\frac{100 k \Omega}{10 k \Omega}\right) \times(6+1.35) \times 10^{-3} \\&+100 \times 10^{3} \times(500+15) \times 10^{-9} \\=&-1000 mV \pm 80.85 mV +51.5 mV \\=&-1029.4 mV ( min ) \text { or }-867.65 mV ( max )\end{aligned}

Related Answered Questions