Question 14.3: Designing an offset-compensating network The noninverting am...

Designing an offset-compensating network The noninverting amplifier in Fig. 14.12(a) has R_{1}=10 k \Omega , R_{ F }=100 k \Omega \text {, and } R_{ X }=R_{ F } \| R_{1}=9.091 k \Omega . Design the offset-compensating network. The op-amp parameters are V_{ io }=6 mV , I_{ B }=500 nA , I_{ io }=200 nA \text {, and PSRR }=150 \mu V V . The DC supply voltages are V_{ CC }=15 V \text { and }-V_{ EE }=-15 V \text {. }

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since the offset due to the biasing current I_{ B } is minimized by the resistance R_{ x } , the output offset voltage will be contributed mostly by V_{ io } \text {. For } V_{ io }=6 mV \text { and } V_{ nt }=V_{ CC }=15 V , Eq. (14.38) gives 6 mV =15 R_{ c } / R_{ b } .

V_{ io } \approx \frac{R_{ c } V_{ nt }}{R_{ b }}=\frac{R_{ c } V_{ CC }\left(=V_{ EE }\right)}{R_{ b }}                                                 (14.38)

 

Letting    R_{ c }=10 \Omega, we get

R_{ b }=\frac{15 R_{ c }}{6 mV }=25 k \Omega

 

Letting R_{ b }=10 R_{ nt ( max )}=10(R / 4) , we get

R=\frac{4 R_{ b }}{10}=4 \times \frac{25 k \Omega}{10}=10 k \Omega                               (potentiometer)

 

The network will change the voltage gain from

1+\frac{R_{ F }}{R_{1}}=1+\frac{100 k \Omega}{10 k \Omega}=11

 

to      1+\frac{R_{ F }}{R_{1}+R_{ c }}=1+\frac{100 k \Omega}{10,010 \Omega}=10.99

causing a 0.09% error.

Related Answered Questions