Question 14.5: Analyzing the CMOS op-amp TLC1078 The CMOS amplifier in Fig....

Analyzing the CMOS op-amp TLC1078 The CMOS amplifier in Fig. 14.21 is operated at a biasing current of I_{ Q }=40 \mu A . The parameters of the MOSFETs are K_{ x }=10 \mu A / V ^{2},\left|V_{ M ( NMOS )}\right|=V_{ M ( PMOS )}=70 V , V_{ t }=0.5 V , \text { and } W / L=160 \mu m / 10 \mu m , \text { except for } Q _{10} , for which W⁄ L = 40 µm ⁄ 10 µm. Find the value of the resistance R_{7} . Assume V_{ DD }=V_{ SS }=5 V.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have

\begin{aligned}K_{ p } &=\frac{K_{ x } W}{L}=10 \mu \times \frac{160}{10}=160 \mu A / V ^{2} \quad\left(\text { for all MOSFETs expect } Q _{10}\right) \\K_{ p 10} &=\frac{K_{ x } W}{L}=10 \mu \times \frac{40}{10}=40 \mu A / V ^{2} \quad\left(\text { for } Q _{10}\right)\end{aligned}

 

For I_{ Q }=40 \mu A \text { and } K_{ p }=160 \mu A / V ^{2} , Eq. (14.69) gives

V_{ GS }=V_{ t }+\sqrt{\frac{I_{ D }}{K_{ p }}}                                     (14.69)

 

V_{ GS }=V_{ t }+\sqrt{I_{ D } / K_{ p }}=0.5+\sqrt{40 / 160}=1 V

Thus,

V_{ GS 3}=V_{ GS 6}=V_{ GS 11}=V_{ GS 12}=V_{ GS 13}=1 V

Also,

I_{ D 3}=I_{ D 6}=I_{ D 11}=I_{ D 12}=I_{ D 10}=I_{ D 13}=I_{ Q }

The drain current I_{ D 13} \text { of } Q _{13} is given by

I_{ D 13}=K_{ p 13}\left(V_{ GS 13}-V_{ t }\right)^{2}                                     (14.74)

Since V_{ GS 10}=V_{ GS 13}-I_{ Q } R_{7} , the drain current I_{ D 10} \text { of } Q _{10} is given by

I_{ D 10}=K_{ p 10}\left(V_{ GS 10}-V_{ t }\right)^{2}=K_{ p 10}\left(V_{ GS 13}-I_{ Q } R_{7}-V_{ t }\right)^{2}                                     (14.75)

The V_{ GS } \text { values of } Q _{10} \text { and } Q _{13} are different, but their drain currents are equal; that is,

I_{ D 13}=I_{ D 10} \quad \text { and } \quad K_{ p 13}\left(V_{ GS 13}-V_{ t }\right)^{2}=K_{ p 10}\left(V_{ GS 13}-I_{ Q } R_{7}-V_{ t }\right)^{2}

which relates R_{7} \text { to } I_{Q} as follows:

R_{7}=\frac{V_{ GS 13}-V_{ t }}{I_{ Q }}\left[\left(\frac{K_{ p 13}}{K_{ p 10}}\right)^{1 / 2}-1\right]                                         (14.76)

Since K_{ p } is proportional to the ratio W⁄L, Eq. (14.76) can be expressed as

R_{7}=\frac{V_{ GS 13}-V_{ t }}{I_{ Q }}\left[\left(\frac{W_{13}}{W_{10}}\right)^{1 / 2}-1\right]                                           (14.77)

which, for I_{ Q }=40 \mu A , W_{10}=40 \mu m , W_{13}=160 \mu m , V_{ GS 13}=1 V \text {, and } V_{ t }=0.5 V \text {, gives } R_{7}=12.5 k \Omega . Thus, the ratio \sqrt{W_{13}/ W_{10}} sets the value of resistance R_{7} \text { or } I_{ Q } .

Related Answered Questions