Question B.4: Analyzing a circuit with a current-dependent current source ...

Analyzing a circuit with a current-dependent current source For the circuit shown in Fig. B.4 with a current-dependent current source, find the currents I_{ B }, I_{ C }, \text { and } I_{ E } \text { and voltage } V_{ C } . Assume R_{ Th }=15 k \Omega, r_{\pi}=1 k \Omega, R_{ C }=2 k \Omega, R_{ E }=500 \Omega, \beta_{ F }=100, V_{ CC }=30 V , \text { and } V_{ Th }=5 V .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using KCL at node 1, we get

I_{ E }=I_{ B }+I_{ C }=I_{ B }+\beta_{ F } I_{ B }=\left(1+\beta_{ F }\right) I_{ B }                                             (B.11)

Using KVL around loop I, we get

V_{ Th }=R_{ Th } I_{ B }+r_{\pi} I_{ B }+R_{ E } I_{ E }=R_{ Th } I_{ B }+r_{\pi} I_{ B }+R_{ E }\left(1+\beta_{ F }\right) I_{ B }

which gives I_{ B } as

\begin{aligned}I_{ B } &=\frac{V_{ Th }}{R_{ Th }+r_{\pi}+R_{ E }\left(1+\beta_{ F }\right)} \\&=\frac{5 V }{15 k \Omega+1 k \Omega+500 \Omega \times(1+100)}=75.19 \mu A\end{aligned}                            (B.12)

Current I_{ C } \text {, which is dependent only on } I_{ B } , can be found from

\begin{aligned}I_{ C } &=\beta_{ F } I_{ B }=\frac{\beta_{ F } V_{ Th }}{R_{ Th }+R_{\pi}+R_{ E }\left(1+\beta_{ F }\right)} \\&=\frac{100 \times 5 V }{15 k \Omega+1 k \Omega+500 \Omega \times(1+100)}=7519 \mu A\end{aligned}                                  (B.13)

Then

\begin{aligned}&I_{ E }=I_{ B }+I_{ C }=75.19 \mu A +7519 \mu A =7594 \mu A \\&V_{ C }=V_{ CC }-I_{ C } R_{C}=30 V -7519 \mu A \times 2 k \Omega=14.96 V\end{aligned}

Voltage V_{ E } can be found from

V_{ E }=R_{ E } I_{ E }=R_{ E }\left(I_{ C }+I_{ B }\right)=R_{ E }\left(\beta_{ F } I_{ B }+I_{ B }\right)=R_{ E } I_{ B }\left(1+\beta_{ F }\right)

Since I_{ C }=\beta_{ F } I_{ B } , we get

\left.V_{ E }=R_{ E } I_{ B }\left(1+\beta_{ F }\right)=R_{ E } I_{ C }\left[\left(1+\beta_{ F }\right) / \beta_{ F }\right)\right]

Thus, R_{ E } \text { offers a resistance of } R_{ E }\left(1+\beta_{ F }\right) \text { to current } I_{ B } in loop I and a resistance of R_{ E }\left(1+\beta_{ F }\right) \beta_{ F } to current I_{ C } \text { in loop II. Therefore, } R_{ E } can be split, or “reflected,” into loop I and loop II by adjusting its value such that V_{ E }  is preserved on loop I and loop II. This arrangement is shown in Fig. B.5.

NOTE: The current-dependent current source \beta_{ F } I_{ B } is often represented by a voltage-dependent voltage source g_{ m } V_{1} \text { such that } \beta_{ F } I_{ B }=\beta_{ F } V_{1} / r_{\pi}=\left(\beta_{ F } / r_{\pi}\right) V_{1} \cdot g_{ m } , which is known as the transconductance, is related to \beta_{ F } \text { by } g_{ m }=\beta_{ F } / r_{\pi} . Therefore, by substituting \beta_{ F }=g_{ m } r_{\pi} , we can apply the above equations for a voltage-dependent voltage source that is often used as the small-signal model of bipolar and field-effect transistors.

image_2021-11-17_134438

Related Answered Questions