Question 14.41: A spiral reduction gear of ratio 3:2 is to be used on a mach...

A spiral reduction gear of ratio 3:2 is to be used on a machine with the angle between the shafts 80°. The approximate centre distance between the shafts is 125 mm. The normal pitch of the teeth is 10 mm and the gear diameters are equal. Find the number of teeth on each gear, pitch circle diameters and spiral angles. Find the efficiency of the drive if the friction angle is 5°.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given: } \quad i=1.5, \Sigma=80^{\circ}, C=125 mm , p_{n}=10 mm , d_{1}=d_{2}, \phi=5^{\circ} .

\cos \beta_{1} / \cos \beta_{2}=z_{1} / z_{2}=2 / 3 .

3 \cos \beta_{1}=2 \cos \left(80^{\circ}-\beta_{1}\right) .

=2\left(\cos 80^{\circ} \cos \beta_{1}+\sin 80^{\circ} \sin \beta_{1}\right) .

1.5 \cos \beta_{1}=0.17365 \cos \beta_{1}+0.9898 \sin \beta_{1} .

\tan \beta_{1}=1.34682 .

\beta_{1}=53.4^{\circ}, \beta_{2}=80^{\circ}-53.4^{\circ}=26.6^{\circ} .

\eta=\left[\cos (\Sigma+\phi)+\cos \left(\beta_{1}-\beta_{2}-\phi\right)\right] /\left[\cos (\Sigma-\phi)+\cos \left(\beta_{1}-\beta_{2}-\phi\right)\right] .

=\left[\cos 85^{\circ}+\cos 20.8^{\circ}\right] /\left[\cos 75^{\circ}+\cos 20.8^{\circ}\right] .

=85.62 \% .

C=\left[z_{1} p_{n} /(2 \pi)\right]\left[1 / \cos \beta_{1}+i / \cos \beta_{2}\right] .

125=\left[\left(z_{1} \times 10\right) /(2 \pi)\right] \times\left(1 / \cos 53.4^{\circ}+1.5 / \cos 26.6^{\circ}\right] .

z_{1}=23.41 \cong 24 .

z_{2}=24 \times 1.5=36 .

d_{1}=d_{2}=z_{1} p_{n} /\left(\pi \cos \beta_{1}\right)=(24 \times 10) /\left(\pi \times \cos 53.4^{\circ}\right)=128.13 mm .

Related Answered Questions