Question B.17: Finding the frequency response of a parallel RLC circuit The...

Finding the frequency response of a parallel RLC circuit The parallel RLC circuit in Fig. B.44 has R = 50 Ω, L = 4 mH, and C = 0.15 µF.

(a) Determine the parallel resonant frequency f_{ p } , the damping ratio δ, the cutoff frequencies, the bandwidth BW _{ p } , and the quality factor Q_{ p } of the circuit.

(b) Use PSpice/SPICE to plot the magnitude and phase angle of the output voltage for R = 50 Ω, 100 Ω, and 200 Ω. The frequency f varies from 100 Hz to 100 kHz. Assume I_{ m }=1 A peak AC.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) R=50 \Omega, L=4 mH , C=0.15 \mu F \text {, and } I_{ m }=1 A peak AC, so

\omega_{ n }=\frac{1}{\sqrt{L C}}=\frac{10^{5}}{\sqrt{4 \times 1.5}}=40,825 rad / s

The parallel resonant frequency is

f_{ p }=\frac{\omega_{ n }}{2 \pi}=\frac{40,825}{2 \pi}=6497.5 Hz

Since \alpha=1 /(2 R C)=1 /\left(2 \times 50 \times 0.15 \times 10^{-6}\right)=66.667 \times 10^{3}, the damping ratio is

\delta=\frac{\alpha}{\omega_{ n }}=66.667 \times \frac{10^{3}}{40,825}=1.633

For the lower cutoff frequency, Eqs. (B.85) and (B.86) give

u_{1}=-\delta+\sqrt{1+\delta^{2}}                                             (B.85)

 

\omega_{1}=u_{1} \omega_{n}=\omega_{ n }\left(-\delta+\sqrt{1+\delta^{2}}\right)                                       (B.86)

 

\begin{aligned}&u_{1}=-\delta+\sqrt{1+\delta^{2}}=-1.633+\sqrt{1+1.633^{2}}=0.28186 \\&\omega_{1}=u_{1} \omega_{ n }=0.28186 \times 40,825=11,507 rad / s\end{aligned}

 

Thus, f_{1}=11,507 / 2 \pi=1831 Hz For the upper cutoff frequency, Eqs. (B.83) and (B.84) give

u_{2}=\delta+\sqrt{1+\delta^{2}}                                  (B.83)

 

\omega_{2}=u_{2} \omega_{ n }=\omega_{ n }\left(\delta+\sqrt{1+\delta^{2}}\right)                                            (B.84)

 

\begin{aligned}&u_{2}=\delta+\sqrt{1+\delta^{2}}=1.633+\sqrt{1+1.633^{2}}=3.54786 \\&\omega_{2}=u_{2} \omega_{ n }=3.54786 \times 40,825=144,841 rad / s\end{aligned}

 

Thus, f_{2}=144,841 / 2 \pi=23,052 Hz From Eq. (B.98), the bandwidth is

BW_p =2 \frac{1}{2 R} \sqrt{\frac{L}{C}} \times \frac{1}{\sqrt{L C}}=\frac{1}{R C} \quad(\text { in } rad / s )                                    (B.98)

 

BW _{ p }=f_{2}-f_{1}=\frac{1}{R C}=\frac{1}{50 \times 0.15 \times 10^{-6}}=133,333.3 rad / s , \text { or } 21,220 Hz

Using Eq. (B.90), we can find the quality factor:

BW _{ p }=\frac{f_{ p }}{Q_{ p }}                                         (B.90)

 

Q_{ p }=\frac{f_{ p }}{B W_{ p }}=\frac{6497.5}{21,220}=0.3062

(b) The parallel RLC circuit for PSpice simulation is shown in Fig. B.46. The list of the circuit file is as follows.

\begin{aligned}&\text { Example B.17 Frequency Response of a Para11e1 RLC Circuit } \\&\text {.PARAM RVAL = 50 } \\&\text {.STEP PARAM RVAL LIST } \quad 50 \quad 100 \quad 200 \\&\text { IM } \quad 0 \quad 1 \quad \text { AC } \quad 1 \text { A } \quad ; \text { ac input of } 1 \vee \text { peak } \\&\text { L } \quad 1 \quad 0 \quad 4 \text { MH } \\&\text { C } \quad 1 \quad 0 \quad 0.15 \text { UF } \\&\text { R } \quad 1 \quad 0 \quad\{\text { RVAL }\} \\&\text {.AC DEC } 100 \quad 100 \text { HZ } \quad 1 \text { MEGHZ } \\&\text {.PROBE } \\&\text {.END }\end{aligned}

The PSpice plots of the magnitude and phase angle (using EXB-17.SCH) are shown in Fig. B.47. The plot for R=50 \Omega \text { gives } f_{1}=1834 Hz , f_{2}=22.56 kHz , f_{ p }=6457 Hz \text {, and } BW _{ p }=f_{2}-f_{1}=20,726 Hz .

image_2021-11-18_212509
image_2021-11-18_212640

Related Answered Questions