Question 16.4: Design a four-bar mechanism when the motions of the input an...

Design a four-bar mechanism when the motions of the input and output links are governed by a function y=2x² and x varies 2 to 4 with an interval of 1. Assume θ to vary from 40° to 120° and Φ from 60° to 132°.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The angular displacement of input link is governed by x whereas that of the output link by y, θ varies from 40° to 120° (i.e. through 80°) and Φ from 60° to 132° (i.e., through 72°). x=2, 3, 4.

\text { The corresponding values of } y \text { are: } 2 \times 2^{2}=8,2 \times 3^{2}=18,2 \times 4^{2}=32 .

r_{x}=\frac{\theta_{f}-\theta_{i}}{x_{f}-x_{i}}=\frac{120^{\circ}-40^{\circ}}{4-2}=\frac{80}{2}=40 .

\frac{\theta_{2}-\theta_{i}}{x_{2}-x_{i}}=r_{x}, \frac{\theta_{2}-40^{\circ}}{3-2}=40, \theta_{2}=80^{\circ} .

r_{y}=\frac{\phi_{f}-\phi_{i}}{y_{f}-y_{i}}=\frac{132-60}{32-8}=\frac{72}{24}=3 .

\frac{\phi_{2}-\phi_{i}}{y_{f}-y_{i}}=r_{y}=\frac{\phi_{2}-60}{18-8}=3, \phi_{2}=90^{\circ} .

Φ, deg θ, deg y x Precision
point
60 40 8 2 1
90 80 18 3 2
132 120 32 4 3

\cos 40^{\circ}=0.7660, \cos 60^{\circ}=0.5000, \cos \left(40^{\circ}-60^{\circ}\right)=0.9397 .

\cos 80^{\circ}=0.1736, \cos 90^{\circ}=00, \cos \left(80^{\circ}-90^{\circ}\right)=0.9848 .

\cos 120^{\circ}=-0.5, \cos 132^{\circ}=0.6691, \cos \left(120^{\circ}-132^{\circ}\right)=0.9781 .

A=\left|\begin{array}{rrr} 0.5000 & 0.7660 & 1 \\ 0.0000 & 0.1736 & 1 \\ -0.6691 & -0.5000 & 1 \end{array}\right|=-0.0596, A_{1}=\left|\begin{array}{ccc} 0.9397 & 0.7660 & 1 \\ 0.9848 & 0.1736 & 1 \\ 0.9791 & -0.5000 & 1 \end{array}\right|=-0.03455 .

A_{2}=\left|\begin{array}{rrr} 0.5000 & 0.9397 & 1 \\ 0.0000 & 0.9848 & 1 \\ -0.6691 & 0.9781 & 1 \end{array}\right|=0.0335, A_{3}=\left|\begin{array}{rrr} 0.5000 & 0.7660 & 0.9397 \\ 0.0000 & 0.1736 & 0.9848 \\ -0.6691 & -0.5000 & 0.9781 \end{array}\right|=-0.0645 .

k_{1}=\frac{A_{1}}{A}=0.5763=\frac{d}{a}, a=\frac{1}{0.5763}=1.73 .

  k_{2}=\frac{A_{2}}{A}=-0.562=-\frac{d}{c}, c=1.78 .

  k_{3}=\frac{A_{3}}{A}=\frac{-0.0645}{-0.0596}=1.0802 .

=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c}=\frac{(1.73)^{2}-b^{2}+(1.78)^{2}+1}{2 \times 1.73 \times 1.78}, \quad b=0.7 .

The mechanism is shown in Fig.16.19.

16.19

Related Answered Questions

Consider a four-bar mechanism as shown in Fig.16.1...