Question 16.5: Determine the lengths of all the four links of a four-bar me...

Determine the lengths of all the four links of a four-bar mechanism to generate y=\log x in the interval 1 ≤ x ≤ 11 for three precision points. The length of the smallest links is 10 cm the range of input angles is 45° ≤θ≤ 105° and output angles is 135° ≤Φ≤ 225°.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

x_{i}=1, x_{f}=11, n=3 .

Using Chebyshev’s precision points,

a=\frac{1}{2}\left(x_{i}+x_{f}\right)=\frac{1}{2}(1+11)=6 .

b=\frac{1}{2}\left(x_{f}-x_{i}\right)=\frac{1}{2}(11-1)=5 .

x_{m}=a+b \cos \left[\frac{(2 m-1) \pi}{2 n}\right], m=1,2,3 .

x_{1}=a+b \cos \left[\frac{(2 \times 1-1) \pi}{6}\right]=a+b \cos \frac{\pi}{6}=6+5 \cos \frac{\pi}{6}=10.33 .

x_{2}=a+b \cos \frac{\pi}{2}=6 .

x_{3}=a+b \cos \left(\frac{5 \pi}{6}\right)=6+5 \cos \left(\frac{5 \pi}{6}\right)=1.67 .

y_{1}=\log x_{1}=\log 10.33=1.014 .

y_{2}=\log x_{2}=\log 6=0.778 .

y_{3}=\log x_{3}=\log 1.67=0.223 .

y_{i}=\log x_{i}=\log 1=0 .

y_{f}=\log x_{f}=\log 11=1.0414 .

Scale factors are:

r_{x}=\frac{\theta_{f}-\theta_{i}}{x_{f}-x_{i}}=\frac{105-45}{11-1}=\frac{60}{10}=6 .

r_{y}=\frac{\phi_{f}-\phi_{i}}{y_{f}-y_{i}}=\frac{225-135}{1.0414-0}=\frac{90}{1.0414}=86.423 .

r_{x}=\frac{\theta-\theta_{i}}{x-x_{i}}, \frac{\theta_{1}-\theta_{i}}{x_{1}-x_{i}}=\frac{\theta_{1}-45^{\circ}}{10.33-1}=6, \theta_{1}=100.98^{\circ} .

\frac{\theta_{2}-45^{\circ}}{6-1}=6, \theta_{2}=75^{\circ}, \frac{\theta_{3}-45^{\circ}}{1.67-1}=6, \theta_{3}=49.02^{\circ} .

r_{y}=\frac{\phi-\phi_{i}}{y-y_{i}}, \frac{\phi_{1}-\phi_{i}}{y_{1}-y_{i}}=\frac{\phi_{1}-135^{\circ}}{1.014-0}=86.423, \phi_{1}=222.63^{\circ} .

\frac{\phi_{2}-135^{\circ}}{0.778-0}=86.423, \phi_{2}=202.24^{\circ} .

\frac{\phi_{3}-135^{\circ}}{0.223-0}=86.423, \phi_{3}=154.27^{\circ} .

d^{2}=(0.221+1.908+1+1.538)=b^{2} .

4.667 d^{2}=b^{2} .

\frac{d}{b}=0.463 .

∴    \frac{d}{a}=2.126, \frac{d}{b}=0.463, \frac{d}{c}=-0.724 .

∴    \frac{d}{a}>\frac{d}{c}>\frac{d}{b} \text { or } a \angle d \angle c \angle b .

∴      Link a is the smallest. Thus a=10 cm, d=21.26 cm.

b=\frac{21.26}{0.463}=45.92 cm , c=\frac{-21.26}{0.724}=-29.36 cm .

– ve sign indicates that the length C is to be drawn in the reverse direction.

Related Answered Questions

Consider a four-bar mechanism as shown in Fig.16.1...