Question 16.6: Design a four-bar mechanism so that θ12=70° and Φ12=50°. Len...

Design a four-bar mechanism so that \theta_{12}=70^{\circ} \text { and } \phi_{12}=50^{\circ} . Length of fixed link is 4 cm. Input and output links rotate anti-clockwise.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { 1. Draw } O_{2} O_{4}=4 cm \text {. Rotate } O_{2} O_{4} \text { about } O_{2} \text { through } \theta_{12} / 2=35^{\circ} \text { clockwise. }
\cos (θ-\phi θ-Φ

deg

\cos θ θ, deg \cos \phi Φ, deg y x Precision
point
-0.525 -121.65 -0.190 100.98 -0.736 222.63 1.014 10.33 1
-0.605 -127.24 0.259 75 -0.926 202.24 0.778 6 2
-0.263 -105.25 0.656 49.02 -0.901 154.27 0.223 1.67 3

The Freudenstein’s equations becomes

\left[\begin{array}{rrr} -0.736 & -0.190 & 1 \\ -0.926 & 0.259 & 1 \\ -0.901 & 0.656 & 1 \end{array}\right]\left\{\begin{array}{l} k_{1} \\ k_{2} \\ k_{3} \end{array}\right\}=\left\{\begin{array}{l} -0.525 \\ -0.605 \\ -0.263 \end{array}\right\} .

A=\left|\begin{array}{rrr} -0.736 & -0.190 & 1 \\ -0.926 & 0.259 & 1 \\ -0.901 & 0.656 & 1 \end{array}\right|=-0.087 .

A_{1}=\left|\begin{array}{rrr} -0.525 & -0.190 & 1 \\ -0.605 & 0.259 & 1 \\ -0.263 & 0.656 & 1 \end{array}\right|=-0.185, A_{2}=\left|\begin{array}{rrr} -0.736 & -0.525 & 1 \\ -0.926 & -0.605 & 1 \\ -0.901 & -0.263 & 1 \end{array}\right|=-0.063.

A_{3}=\left|\begin{array}{rrr} -0.736 & -0.190 & -0.525 \\ -0.926 & 0.259 & -0.605 \\ -0.901 & 0.656 & -0.263 \end{array}\right|=-0.103 .

k_{1}=\frac{A_{1}}{A}=\frac{-0.185}{-0.087}=0.126=\frac{d}{a}, a=\frac{d}{2.126} .

k_{2}=\frac{A_{2}}{A}=\frac{-0.063}{-0.087}=0.724=-\frac{d}{c} \text { or } \frac{d}{c}=-0.724, c=\frac{-d}{0.724} .

k_{3}=\frac{A_{3}}{A}=\frac{-0.103}{-0.087}=1.184=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c} .

\left(\frac{d}{2.126}\right)^{2}-b^{2}+\left(\frac{-d^{2}}{0.724}\right)+d^{2}=1.184 \times 2 \times \frac{d}{2.126} \times\left(\frac{-d^{2}}{0.724}\right) .

\frac{d^{2}}{4.52}-b^{2}+\frac{d^{2}}{0.524}+d^{2}=-1.538 d^{2} .

\text { 2. Rotate } O _{2} O _{4} \text { about } O_{4} \text { through } \phi_{12} / 2=25^{\circ} \text { clockwise. The point of intersection of these two lines }\text { locates relative pole } R_{12} .

\text { 3. Construct an angle } \psi_{12}=\frac{1}{2}\left(\theta_{12}-\phi_{12}\right)=\frac{1}{2}\left(70^{\circ}-50^{\circ}\right)=10^{\circ} \text { at } R_{12} . Join any two points on the two arms of this angle to obtain the coupler link AB. Join A with O_{2} \text { and } B \text { with } O_{4} to get the input and output links.

\text { 4. } O_{2} A B O_{4} \text { is the desired mechanism. } .

16.20

Related Answered Questions

Consider a four-bar mechanism as shown in Fig.16.1...