Question 19.5: (Koerner, 1999) Design a 7m high geogrid-reinforced wall whe...

(Koerner, 1999) Design a 7m high geogrid-reinforced wall when the reinforcement vertical maximum spacing must be 1.0 m. The coverage ratio is 0.80 (Refer to Fig. Ex. 19.5). Given: T_{u}=156 kN / m , C_{r}=0.80, C_{i}=0.75. The other details are given in the figure.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Internal Stability

From Eq. (19.14)

 

p_{h}=p_{a}+q_{h}=\left(\gamma z K_{A}+q_{h}\right) (9.14)

 

\begin{aligned}&p_{h}=\left(\gamma z K_{A}+q_{h}\right)=\gamma z K_{A}+q_{s} K_{A} \\&K_{A}=\tan ^{2}\left(45^{\circ}-\phi / 2\right)=\tan ^{2}\left(45^{\circ}-32 / 2\right)=0.31 \\&p_{h}=(18 \times z \times 0.31)+(15 \times 0.31)=5.58 z+4.65\end{aligned}

 

1. For geogrid vertical spacing.

Given T_{u}=156 kN/m

From Eq. (19.10) and Table 19.5, we have

 

T_{a}=T_{u}\left(\frac{1}{R F_{I D} \times R F_{C R} \times R F_{B D} \times R F_{C D}}\right) (19.10)

 

\begin{aligned}&T_{a}=T_{u}\left[\frac{1}{R F_{I D} \times R F_{C R} \times R F_{B D} \times R F_{C D}}\right] \\&T_{a}=156 \frac{1}{1.2 \times 2.5 \times 1.3 \times 1.0}=40 kN / m\end{aligned}

 

But use T_{ design }=28.6 kN / m \text { with } F_{ s }=1.4 \text { on } T_{a}

 

From Eq. (19.28)

 

h=\frac{T_{a} C_{r}}{p_{h}} (19.28)

 

T_{ design }=\frac{h p_{h}}{C_{r}}

 

28.6=h \frac{5.58 z+4.65}{0.8}

 

or h=\frac{22.9}{5.58 z+4.65}

 

Maximum depth for h = 1 m is

 

1.0=\frac{22.9}{5.58 z+4.65} \text { or } z=3.27 m

 

Maximum depth for h = 0.5m

 

0.5=\frac{22.9}{5.58 z+4.65} \text { or } z=7.37 m

 

The distribution of geogrid layers is shown in Fig. Ex. 19.5.

2. Embedment length of geogrid layers.

From Eqs (19.27) and (19.24)

 

T_{a}=T F_{s}=\left(\gamma z K_{A}+q_{h}\right) h F_{s} (19.24)

 

F_{R}=2 C_{i} C_{r} L_{e} p_{o} \tan \phi \geq T F_{s} (19.27)

 

2 C_{1} C_{r} L_{e} p_{o} \tan \phi=T_{H} F_{s}=p_{h} h F_{s}

 

Substituting known values

 

2 \times 0.75 \times 0.8 \times\left(L_{e}\right) \times 18 \times(z) \tan 32^{\circ}=h(5.58 z+4.65) 1.5

 

Simplfying L_{e}=\frac{(0.62 z+0.516) h}{z}

 

The equation for L_{R} is

 

\begin{aligned}L_{R} &=(H-z) \tan \left(45^{\circ}-\phi / 2\right)=(7-z) \tan \left(45^{\circ}-32 / 2\right) \\&=3.88-0.554(z)\end{aligned}

 

From the above relationships the spacing of geogrid layers and their lengths are given below.

 

Layer Depth Spacing L_{e} L_{e} (min) L_{R} L (cal) L (required)
No. (m) h (m) (m) (m) (m) (m) (m)
1 0.75 0.75 0.98 1 3.46 4.46 5
2 1.75 1 0.92 1 2.91 3.91 5
3 2.75 1 0.81 1 2.36 3.36 5
4 3.25 0.5 0.39 1 2.08 3.08 5
5 3.75 0.5 0.38 1 1.8 2.8 5
6 4.25 0.5 0.37 1 1.52 2.52 5
7 4.75 0.5 0.36 1 1.25 2.25 5
8 5.25 0.5 0.36 1 0.97 1.97 5
9 5.75 0.5 0.36 1 0.69 1.69 5
10 6.25 0.5 0.35 1 0.42 1.42 5
11 6.75 0.5 0.35 1 0.14 1.14 5

 

External Stability

(a) Pressure distribution

 

\begin{aligned}&P_{a}=\frac{1}{2} \gamma H^{2} K_{A}=\frac{1}{2} \times 17 \times 7^{2} \tan ^{2}\left(45^{\circ}-30 / 2\right)=138.8 kN / m \\&P_{q}=q_{s} K_{A} H=15 \times 0.33 \times 7=34.7 kN / m \\&\text { Total } \approx 173.5 kN / m\end{aligned}

 

1. Check for sliding (neglecting effect of surcharge)

 

\begin{aligned}&F_{R}=W \tan \delta=\gamma \times H \times L \tan 25^{\circ}=18 \times 7 \times 5.0 \times 0.47=293.8 kN / m \\&P=P_{a}+P_{q}=173.5 kN / m \\&F_{s}=\frac{293.8}{173.5}=1.69>1.5 OK\end{aligned}

 

2. Check for overturning

 

Resisting moment M_{R}=W \times \frac{L}{2}=18 \times 7 \times 5 \times \frac{5}{2}=1575 kN – m

 

Overturning moment M_{O}=P_{a} \times \frac{H}{3}+P_{q} \times \frac{H}{2}

 

or M_{O}=138.8 \times \frac{7}{3}+34.7 \times \frac{7}{2}=445.3 kN – m

 

F_{s}=\frac{1575}{445.3}=3.54>2.0 \quad OK

 

3. Check for bearing capacity

 

\text { Eccentricity } e=\frac{M_{O}}{W+q_{s} L}=\frac{445.3}{18 \times 7 \times 5+15 \times 5}=0.63

 

e=0.63<\frac{L}{6}=\frac{5}{6}=0.83 Ok

 

Effective length =L-2 e=5-2 \times 0.63=3.74 m

 

Bearing pressure =[18 \times 7+15]\left(\frac{5}{3.74}\right)=189 kN / m ^{2}

 

F_{s}=\frac{600}{189}=3.17>3.0 OK

 

Table 19.5 Recommended reduction factor values for use in Eq. (19.10) for determining allowable tensile strength of geogrids
Application Area R F_{ID} R F_{CR} R F_{C D} RF _{B D}
Unpaved roads 1.1 to1.6 1.5 to 2.5 1.0 to 1.5 1.0 to 1.1
Paved roads 1.2 to 1.5 1.5 to 2.5 1.1 to 1.6 1.0 to 1.1
Embankments 1.1 to 1.4 2.0 to 3.0 1.1 to 1.4 1.0 to 1.2
Slopes 1.1 to 1.4 2.0 to 3.0 1.1 to 1.4 1.0 to 1.2
Walls 1.1 to 1.4 2.0 to 3.0 1.1 to 1.4 1.0 to 1.2
Bearing capacity 1.2 to 1.5 2.0 to 3.0 1.1 to 1.6 1.0 to 1.2

Related Answered Questions