Question 13.197: A 300-g collar A is released from rest, slides down a fricti...

A 300-g collar A is released from rest, slides down a frictionless rod, and strikes a 900-g collar B which is at rest and supported by a spring of constant 500 N/m. Knowing that the coefficient of restitution between the two collars is 0.9, determine (a) the maximum distance collar A moves up the rod after impact, (b) the maximum distance collar B moves down the rod after impact.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

After impact                     Velocity of A just before impact, \nu_{0}

\begin{aligned}\nu_{0}=\sqrt{2 g h} & =\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(1.2 \mathrm{~m}) \sin 30^{\circ}} \\& =\sqrt{2(9.81)(1.2)(0.5)}=3.431 \mathrm{~m} / \mathrm{s}\end{aligned}

Conservation of momentum

+\swarrow_{\underline{30^°}}m_A \nu_0=m_B \nu_B-m_A \nu_A: \quad 0.3 \nu_0=0.9\nu_B-0.3\nu_A \qquad (1)

 

Restitution

\left(\nu_{A}+\nu_{B}\right)=e\left(\nu_{0}+0\right)=0.9 \nu_{0}\quad (2)

Substituting for \nu_{B} from (2) in (1)

\begin{gathered}0.3 \nu_{0}=0.9\left(0.9 \nu_{0}-\nu_{A}\right)-0.3 \nu_{A} \quad 1.2 \nu_{A}=0.51 \nu_{0} \\\nu_{A}=1.4582 \mathrm{~m} / \mathrm{s}, \nu_{B}=1.6297 \mathrm{~m} / \mathrm{s}\end{gathered}

(a) A moves up the distance d where:

\frac{1}{2} \not m_{A} \nu_{A}^{2}=\not m_{A} g d \sin 30^{\circ} ; \quad \frac{1}{2}(1.4582 \mathrm{~m} / \mathrm{s})^{2}=\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) d(0.5)

\swarrow_{\underline{30^°}}d_{A}=0.21675\,\mathrm{m}=217\,\mathrm{mm}\,\blacktriangleleft

 

(b) Static deflection = x_0 , B moves down \swarrow_{\underline{30^°}}^{d_B}

Conservation of energy (1) to (2)

Position (1) – spring deflected, x_{0}

\begin{gathered}k x_{0}=m_{B} g \sin 30^{\circ} \\T_{1}+V_{1}=T_{2}+V_{2}: \quad T_{1}=\frac{1}{2} m_{B} \nu_{B}^{2}, T_{2}=0\end{gathered}

\begin{gathered}V_{1}=V_{e}+V_{g}=\frac{1}{2} k x_{0}^{2}+m_{B} g d_{B} \sin 30^{\circ} \\V_{2}=V_{e}^{\prime}+V_{g}^{\prime}=\int_{0}^{x_{0}+d_{B}} k x \ d x=\frac{1}{2} k\left(d_{B}^{2}+2 d_{B} x_{0}+x_{0}^{2}\right) \\\frac{1}{2} k x_{0}^{2}+m g \ d_{B} \sin 30^{\circ}+\frac{1}{2} m_{B} \nu_{B}^{2}=\frac{1}{2} k\left(d_{B}^{2}+2 d_{B} x_{0}+x_{0}^{2}\right)+0+0 \\\therefore k \ d_{B}^{2}=m_{B} \nu_{B}^{2} ; \quad 500 d_{B}^{2}=0.9(1.6297)^{2} \quad d_{B}=0.0691 \mathrm{~m}\end{gathered}

d_{B}=69.1 \mathrm{~mm}\blacktriangleleft

13.197.
13.197..

Related Answered Questions