A 4-bar mechanism is required such that the input and out angles are coordinated as given below:
80° | 50° | 30° | Input Crank angle |
50° | 30° | 0° | Output follower angle |
Synthesize the four-bar mechanism.
A 4-bar mechanism is required such that the input and out angles are coordinated as given below:
80° | 50° | 30° | Input Crank angle |
50° | 30° | 0° | Output follower angle |
Synthesize the four-bar mechanism.
The Freudenstein’s equation for displacement of a four-bar mechanism is,
k_{i} \cos \phi_{i}+k_{2} \cos \theta_{i}+k_{3}=\cos \left(\theta_{i}-\phi_{i}\right) .
\cos \left(\theta_{i}-\phi_{i}\right) | \theta_{i}-\phi_{i}, deg | \cos \phi_{i} | \phi_{i}, deg | \cos \theta_{i} | \theta_{i} deg | Position |
0.866 | 30 | 1.000 | 0 | 0.866 | 30 | 1 |
0.940 | 20 | 0.866 | 30 | 0.643 | 50 | 2 |
0.940 | 20 | 0.500 | 60 | 0.174 | 80 | 3 |
\left[\begin{array}{lll} 1.000 & 0.866 & 1 \\ 0.866 & 0.643 & 1 \\ 0.500 & 0.714 & 1 \end{array}\right]\left\{\begin{array}{l} k_{1} \\ k_{2} \\ k_{3} \end{array}\right\}=\left\{\begin{array}{l} 0.866 \\ 0.940 \\ 0.940 \end{array}\right\} .
Solving by Cramer’s rule,
\Delta=\left[\begin{array}{lll} 1.000 & 0.866 & 1 \\ 0.866 & 0.643 & 1 \\ 0.500 & 0.174 & 1 \end{array}\right]=-0.01877 .
\Delta_{1}=\left[\begin{array}{lll} 0.866 & 0.866 & 1 \\ 0.940 & 0.643 & 1 \\ 0.940 & 0.714 & 1 \end{array}\right]=-0.0347 .
\Delta_{2}=\left[\begin{array}{lll} 1.000 & 0.866 & 1 \\ 0.866 & 0.940 & 1 \\ 0.500 & 0.940 & 1 \end{array}\right]=-0.02708 .
\Delta_{3}=\left[\begin{array}{lll} 1.000 & 0.866 & 0.866 \\ 0.866 & 0.643 & 0.940 \\ 0.500 & 0.174 & 0.940 \end{array}\right]=-0.005 .
k_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-0.0347}{-0.01877}=1.8487 .
k_{2}=\frac{\Delta_{2}}{\Delta}=\frac{-0.02708}{-0.01877}=-1.4427 .
k_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-0.005}{-0.01877}=0.2664 .
k_{1}=\frac{d}{a}, a=\frac{1}{1.8487}=0.541 \text { units for } d=1 \text { unit } .
k_{2}=-\frac{d}{c}, c=\frac{-1}{-1.4427}=0.693 \text { units } .
k_{3}=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c} .
0.2664=\frac{(0.541)^{2}-b^{2}+(0.693)^{2}+1}{2 \times 0.541 \times 0.693} .
b^{2}=1.5732 .
b = 1.254 units.
The lengths of various links are:
a=0.541 units, b=1.254 units, c=0.693 units, d=1 unit.
The mechanism is shown in Fig.16.27.