Question 16.13: A 4-bar mechanism is required such that the input and out an...

A 4-bar mechanism is required such that the input and out angles are coordinated as given below:

80° 50° 30° Input Crank angle
50° 30° Output follower angle

Synthesize the four-bar mechanism.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The Freudenstein’s equation for displacement of a four-bar mechanism is,

k_{i} \cos \phi_{i}+k_{2} \cos \theta_{i}+k_{3}=\cos \left(\theta_{i}-\phi_{i}\right) .

\cos \left(\theta_{i}-\phi_{i}\right) \theta_{i}-\phi_{i}, deg \cos \phi_{i} \phi_{i}, deg \cos \theta_{i} \theta_{i} deg Position
0.866 30 1.000 0 0.866 30 1
0.940 20 0.866 30 0.643 50 2
0.940 20 0.500 60 0.174 80 3

\left[\begin{array}{lll} 1.000 & 0.866 & 1 \\ 0.866 & 0.643 & 1 \\ 0.500 & 0.714 & 1 \end{array}\right]\left\{\begin{array}{l} k_{1} \\ k_{2} \\ k_{3} \end{array}\right\}=\left\{\begin{array}{l} 0.866 \\ 0.940 \\ 0.940 \end{array}\right\} .

Solving by Cramer’s rule,

\Delta=\left[\begin{array}{lll} 1.000 & 0.866 & 1 \\ 0.866 & 0.643 & 1 \\ 0.500 & 0.174 & 1 \end{array}\right]=-0.01877 .

\Delta_{1}=\left[\begin{array}{lll} 0.866 & 0.866 & 1 \\ 0.940 & 0.643 & 1 \\ 0.940 & 0.714 & 1 \end{array}\right]=-0.0347 .

\Delta_{2}=\left[\begin{array}{lll} 1.000 & 0.866 & 1 \\ 0.866 & 0.940 & 1 \\ 0.500 & 0.940 & 1 \end{array}\right]=-0.02708 .

\Delta_{3}=\left[\begin{array}{lll} 1.000 & 0.866 & 0.866 \\ 0.866 & 0.643 & 0.940 \\ 0.500 & 0.174 & 0.940 \end{array}\right]=-0.005 .

k_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-0.0347}{-0.01877}=1.8487 .

k_{2}=\frac{\Delta_{2}}{\Delta}=\frac{-0.02708}{-0.01877}=-1.4427 .

k_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-0.005}{-0.01877}=0.2664 .

  k_{1}=\frac{d}{a}, a=\frac{1}{1.8487}=0.541 \text { units for } d=1 \text { unit } .

k_{2}=-\frac{d}{c}, c=\frac{-1}{-1.4427}=0.693 \text { units } .

k_{3}=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c} .

0.2664=\frac{(0.541)^{2}-b^{2}+(0.693)^{2}+1}{2 \times 0.541 \times 0.693} .

b^{2}=1.5732 .

b = 1.254 units.

The lengths of various links are:
a=0.541 units, b=1.254 units, c=0.693 units, d=1 unit.
The mechanism is shown in Fig.16.27.

16.27

Related Answered Questions

Consider a four-bar mechanism as shown in Fig.16.1...