Calculate the natural frequency of the system shown in Fig.17.13.
Calculate the natural frequency of the system shown in Fig.17.13.
Force in spring 1, F_{1}=m g .
Force in spring 2, F_{2}=\frac{m g b}{a} .
Deflection of mass m,
\delta_{s t}=\frac{F_{1}}{k_{1}}+\frac{F_{2}}{k_{2}} \times \frac{b}{a} .
=\frac{m g}{k_{1}}+\frac{m g b}{k_{2} a} \times \frac{b}{a} .
=m g\left[\frac{1}{k_{1}}+\left(\frac{b}{a}\right)^{2} \times \frac{1}{k_{2}}\right]=m g\left[\frac{k_{1} b^{2}+k_{2} a^{2}}{k_{1} k_{2} a^{2}}\right] .
Natural frequency, \omega_{n}=\sqrt{\frac{g}{\delta_{s t}}} .
=\sqrt{\frac{k_{1} k_{2} a^{2}}{m\left(k_{1} b^{2}+k_{2} a^{2}\right)}} rad / s .