Question 20.7: Determine the depth of embedment and the force in the tie ro...

Determine the depth of embedment and the force in the tie rod of the anchored bulkhead shown in Fig. Ex. 20.7(a). The backfill above and below the dredge line is sand, having the following properties

Gs=2.67,γsat=18kN/m3,γd=13kN/m3 and ϕ=30G_{s}=2.67, \gamma_{s a t}=18 kN / m ^{3}, \gamma_{d}=13 kN / m ^{3} \text { and } \phi=30^{\circ}

Solve the problem by the free-earth support method. Assume the backfill above the water table remains dry.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assume the soil above the water table is dry

 

For ϕ=30,KA=13,KP=3.0\phi=30^{\circ}, \quad K_{A}=\frac{1}{3}, \quad K_{P}=3.0

 

and K=KPKA=313=2.67K=K_{P}-K_{A}=3-\frac{1}{3}=2.67

 

γb=γsat γw=189.81=8.19kN/m3\gamma_{b}=\gamma_{\text {sat }}-\gamma_{w}=18-9.81=8.19 kN / m ^{3}.

 

where γw=9.81kN/m3\gamma_{w}=9.81 kN / m ^{3}.

 

The pressure distribution along the bulkhead is as shown in Fig. Ex. 20.7(b)

 

pˉ1=γdh1KA=13×2×13=8.67kN/m2 at GW level pˉa=pˉ1+γbh2KA=8.67+8.19×3×13=16.86kN/m2 at dredge line level \begin{aligned}&\bar{p}_{1}=\gamma_{d} h_{1} K_{A}=13 \times 2 \times \frac{1}{3}=8.67 kN / m ^{2} \text { at } GW \text { level } \\&\bar{p}_{a}=\bar{p}_{1}+\gamma_{b} h_{2} K_{A}=8.67+8.19 \times 3 \times \frac{1}{3}=16.86 kN / m ^{2} \text { at dredge line level }\end{aligned}

 

y0=pˉaγb×K=16.868.19×2.67=0.77mPa=12×pˉ1×h1+pˉ1×h2+12(pˉapˉ1)h2+12pˉay0=12×8.67×2+8.67×3+12(16.868.67)3+12×16.86×0.77=53.5kN/m of wall \begin{aligned}y_{0}=& \frac{\bar{p}_{a}}{\gamma_{b} \times K}=\frac{16.86}{8.19 \times 2.67}=0.77 m \\P_{a}=& \frac{1}{2} \times \bar{p}_{1} \times h_{1}+\bar{p}_{1} \times h_{2}+\frac{1}{2}\left(\bar{p}_{a}-\bar{p}_{1}\right) h_{2}+\frac{1}{2} \bar{p}_{a} y_{0} \\=& \frac{1}{2} \times 8.67 \times 2+8.67 \times 3+\frac{1}{2}(16.86-8.67) 3 \\&+\frac{1}{2} \times 16.86 \times 0.77=53.5 kN / m \text { of wall }\end{aligned}

 

To find yˉ\bar{y}, taking moments of areas about 0, we have

 

53.5×yˉ=12×8.67×223+3+0.77+8.67×3(3/2+0.77)53.5 \times \bar{y}=\frac{1}{2} \times 8.67 \times 2 \frac{2}{3}+3+0.77+8.67 \times 3(3 / 2+0.77)

 

+12(16.868.67)×3(3/3+0.77)+12×16.86×23×0.772=122.6+\frac{1}{2}(16.86-8.67) \times 3(3 / 3+0.77)+\frac{1}{2} \times 16.86 \times \frac{2}{3} \times 0.77^{2}=122.6

 

We have yˉ=122.653.5=2.3m,yˉa=4+0.772.3=2.47m\bar{y}=\frac{122.6}{53.5}=2.3 m , \quad \bar{y}_{a}=4+0.77-2.3=2.47 m

 

Now Pp=12×γb×K×D02=12×8.19×2.67D02=10.93D02P_{p}=\frac{1}{2} \times \gamma_{b} \times K \times D_{0}^{2}=\frac{1}{2} \times 8.19 \times 2.67 D_{0}^{2}=10.93 D_{0}^{2}

 

and its distance from the anchor rod is

 

h4=h3+y0+2/3D0=4+0.77+2/3D0=4.77+0.67D0h_{4}=h_{3}+y_{0}+2 / 3 D_{0}=4+0.77+2 / 3 D_{0}=4.77+0.67 D_{0}

 

Now, taking the moments of the forces about the tie rod, we have

 

Pa×yˉa=Pp×h453.5×2.47=10.93D02×(4.77+0.67D0)\begin{aligned}&P_{a} \times \bar{y}_{a}=P_{p} \times h_{4} \\&53.5 \times 2.47=10.93 D_{0}^{2} \times\left(4.77+0.67 D_{0}\right)\end{aligned}

 

Simplifying, we have

 

D01.5m,D=y0+D0=0.77+1.5=2.27mD(design)=1.4×2.27=3.18m\begin{aligned}&D_{0} \approx 1.5 m , D=y_{0}+D_{0}=0.77+1.5=2.27 m \\&D(\operatorname{design})=1.4 \times 2.27=3.18 m\end{aligned}

 

For finding the tension in the anchor rod, we have

 

PaPpTa=0P_{a}-P_{p}-T_{a}=0

 

Therefore, Ta=PaPp=53.510.93(1.5)2=28.9T_{a}=P_{a}-P_{p}=53.5-10.93(1.5)^{2}=28.9 kN/m of wall for the calculated depth DoD_{o}.

Related Answered Questions

Refer to Fig. Ex. 20.8 The following equations may...