Question 3.11.4: An SKF 6210 angular-contact ball bearing has an axial load F...

An SKF 6210 angular-contact ball bearing has an axial load F_a  of 400  lbf and a radial load F_r  of  500  lbf  applied with the outer ring stationary. The basic static load rating C_0  is  4450  lbf  and the basic load rating  C_{10} is 7900 bf. Estimate the \mathscr{L}_{10} life at a speed of 720 rev/min.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

V = 1 \ and \ {F_a}/{C_0} = {400}/{4450} = 0.090. Interpolate for e in Table 11–1:

Table 11–1 {F_a}/{\left(VF_r\right)} \le e {F_a}/{\left(VF_r\right)} \gt e
Equivalent Radial Load
Factors for Ball Bearings
{F_a}/{C_0} e X_1 Y_1 X_2 Y_2
0.014* 0.19 1.00 0 0.56 2.30
0.021 0.21 1.00 0 0.56 2.15
0.028 0.22 1.00 0 0.56 1.99
0.042 0.24 1.00 0 0.56 1.85
0.056 0.26 1.00 0 0.56 1.71
0.070 0.27 1.00 0 0.56 1.63
0.084 0.28 1.00 0 0.56 1.55
0.110 0.30 1.00 0 0.56 1.45
0.17 0.34 1.00 0 0.56 1.31
0.28 0.38 1.00 0 0.56 1.15
0.42 0.42 1.00 0 0.56 1.04
0.56 0.44 1.00 0 0.56 1.00
∗Use 0.014 if {F_a}/{C_0} \lt 0.014.
{F_a}/{C_0} e
0.084 0.28
0.090 e from which e =0.285
0.110 0.30

 

{F_a}/{\left(V F_r\right )} = {400}/{\left[\left(1\right)500\right]} = 0.8 \gt 0.285. Thus, interpolate for Y_2:

 

{F_a}/{C_0}   Y_2
0.084 1.55
0.09   Y_2 from which   Y_2 = 1.527
0.110 1.45

From Eq. (11–9),

F_e=X_iVF_r+Y_i F_a

 

F_e=X_2 V F_r+Y_2 F_a=0.56\left(1\right)500+1.527\left(400\right)=890.8 lbf

 

With \mathscr{L}_D=\mathscr{L}_{10} \ and \ F_D=F_e , solving Eq. (11–3)
C_{10}=F_R=F_D\left(\frac{L_D}{L_R} \right) ^{{1}/{a}}=F_D\left(\frac{\mathscr{L}_D n_D 60}{\mathscr{L}_R n_R 60} \right) ^{{1}/{a}}

for \mathscr{L}_{10} gives

\mathscr{L}_{10}=\frac{60 \mathscr{L}_{R} n_R}{60 n_D}\left(\frac{C_{10}}{F_e}\right)^a=\frac{10^6}{60\left(720\right) }\left(\frac{7900}{890.8} \right)^3 =16 150   h.

Related Answered Questions