A large electrical transformer is to be suspended from a roof truss of a building. The total weight of the transformer is 32 000 lb. Design the means of support.
A large electrical transformer is to be suspended from a roof truss of a building. The total weight of the transformer is 32 000 lb. Design the means of support.
Objective: A large electrical transformer is to be suspended from a roof truss of a building. The total weight of the transformer is 32 000 lb. Design the means of support.
Given: The total load is 32 000 lb. The transformer will be suspended below a roof truss inside a building. The load can be considered to be static. It is assumed that it will be protected from the weather and that temperatures are not expected to be severely cold or hot in the vicinity of the transformer.
Basic Design Decisions: Two straight, cylindrical rods will be used to support the transformer, connecting the top of its casing to the bottom chord of the roof truss. The ends of the rod will be threaded to allow them to be secured by nuts or by threading them into tapped holes. This design example will be concerned only with the rods.
It is assumed that appropriate attachment points are available to allow the two rods to share the load equally during service. However, it is possible that only one rod will carry the entire load at some point during installation. Therefore, each rod will be designed to carry the full 32 000 lb.
We will use steel for the rods, and because neither weight nor physical size is critical in this application, a plain, medium-carbon steel will be used. We specify SAE 1040 cold-drawn steel. From Appendix 3, we find that it has a yield strength of 71 ksi and moderately high ductility as represented by its 12% elongation. The rods should be protected from corrosion by appropriate coatings.
The objective of the design analysis that follows is to determine the size of the rod.
APPENDIX 3 Design Properties of Carbon and Alloy Steel | |||||||
Material designation (SAE number) |
Condition | Tensile strength |
Yield strength |
Ductility (percent elongation in 2 in) |
Brinell hardness (HB) |
||
(ksi) | (MPa) | (ksi) | (MPa) | ||||
1020 | Hot-rolled | 55 | 379 | 30 | 207 | 25 | 111 |
1020 | Cold-drawn | 61 | 420 | 51 | 352 | 15 | 122 |
1020 | Annealed | 60 | 414 | 43 | 296 | 38 | 121 |
1040 | Hot-rolled | 72 | 496 | 42 | 290 | 18 | 144 |
1040 | Cold-drawn | 80 | 552 | 71 | 490 | 12 | 160 |
1040 | OQT 1300 | 88 | 607 | 61 | 421 | 33 | 183 |
1040 | OQT 400 | 113 | 779 | 87 | 600 | 19 | 262 |
1050 | Hot-rolled | 90 | 620 | 49 | 338 | 15 | 180 |
1050 | Cold-drawn | 100 | 690 | 84 | 579 | 10 | 200 |
1050 | OQT 1300 | 96 | 662 | 61 | 421 | 30 | 192 |
1050 | OQT 400 | 143 | 986 | 110 | 758 | 10 | 321 |
1117 | Hot-rolled | 65 | 448 | 40 | 276 | 33 | 124 |
1117 | Cold-drawn | 80 | 552 | 65 | 448 | 20 | 138 |
1117 | WQT 350 | 89 | 614 | 50 | 345 | 22 | 178 |
1137 | Hot-rolled | 88 | 607 | 48 | 331 | 15 | 176 |
1137 | Cold-drawn | 98 | 676 | 82 | 565 | 10 | 196 |
1137 | OQT 1300 | 87 | 600 | 60 | 414 | 28 | 174 |
1137 | OQT 400 | 157 | 1083 | 136 | 938 | 5 | 352 |
1144 | Hot-rolled | 94 | 648 | 51 | 352 | 15 | 188 |
1144 | Cold-drawn | 100 | 690 | 90 | 621 | 10 | 200 |
1144 | OQT 1300 | 96 | 662 | 68 | 496 | 25 | 200 |
1144 | OQT 400 | 127 | 876 | 91 | 627 | 16 | 277 |
1213 | Hot-rolled | 55 | 379 | 33 | 228 | 25 | 110 |
1213 | Cold-drawn | 75 | 517 | 58 | 340 | 10 | 150 |
12L13 | Hot-rolled | 57 | 393 | 34 | 234 | 22 | 114 |
12L13 | Cold-drawn | 70 | 483 | 60 | 414 | 10 | 140 |
1340 | Annealed | 102 | 703 | 63 | 434 | 26 | 207 |
1340 | OQT 1300 | 100 | 690 | 75 | 517 | 25 | 235 |
1340 | OQT 1000 | 144 | 993 | 132 | 910 | 17 | 363 |
1340 | OQT 700 | 221 | 1520 | 197 | 1360 | 10 | 444 |
1340 | OQT 400 | 285 | 1960 | 234 | 1610 | 8 | 578 |
3140 | Annealed | 95 | 655 | 67 | 462 | 25 | 187 |
3140 | OQT 1300 | 115 | 792 | 94 | 648 | 23 | 233 |
3140 | OQT 1000 | 152 | 1050 | 133 | 920 | 17 | 311 |
3140 | OQT 700 | 220 | 1520 | 200 | 1380 | 13 | 461 |
3140 | OQT 400 | 280 | 1930 | 248 | 1710 | 11 | 555 |
4130 | Annealed | 81 | 558 | 52 | 359 | 28 | 156 |
4130 | WQT 1300 | 98 | 676 | 89 | 614 | 28 | 202 |
4130 | WQT 1000 | 143 | 986 | 132 | 910 | 16 | 302 |
4130 | WQT 700 | 208 | 1430 | 180 | 1240 | 13 | 415 |
4130 | WQT 400 | 234 | 1610 | 197 | 1360 | 12 | 461 |
4140 | Annealed | 95 | 655 | 54 | 372 | 26 | 197 |
4140 | OQT 1300 | 117 | 807 | 100 | 690 | 23 | 235 |
4140 | OQT 1000 | 168 | 1160 | 152 | 1050 | 17 | 341 |
4140 | OQT 700 | 231 | 1590 | 212 | 1460 | 13 | 461 |
4140 | OQT 400 | 290 | 2000 | 251 | 1730 | 11 | 578 |
4150 | Annealed | 106 | 731 | 55 | 379 | 20 | 197 |
4150 | OQT 1300 | 127 | 880 | 116 | 800 | 20 | 262 |
4150 | OQT 1000 | 197 | 1360 | 181 | 1250 | 11 | 401 |
4150 | OQT 700 | 247 | 1700 | 229 | 1580 | 10 | 495 |
4150 | OQT 400 | 300 | 2070 | 248 | 1710 | 10 | 578 |
4340 | Annealed | 108 | 745 | 68 | 469 | 22 | 217 |
4340 | OQT 1300 | 140 | 965 | 120 | 827 | 23 | 280 |
4340 | OQT 1000 | 171 | 1180 | 158 | 1090 | 16 | 363 |
4340 | OQT 700 | 230 | 1590 | 206 | 1420 | 12 | 461 |
4340 | OQT 400 | 283 | 1950 | 228 | 1570 | 11 | 555 |
5140 | Annealed | 83 | 572 | 42 | 290 | 29 | 167 |
5140 | OQT 1300 | 104 | 717 | 83 | 572 | 27 | 207 |
5140 | OQT 1000 | 145 | 1000 | 130 | 896 | 18 | 302 |
5140 | OQT 700 | 220 | 1520 | 200 | 1380 | 11 | 429 |
5140 | OQT 400 | 276 | 1900 | 226 | 1560 | 7 | 534 |
5150 | Annealed | 98 | 676 | 52 | 359 | 22 | 197 |
5150 | OQT 1300 | 116 | 800 | 102 | 700 | 22 | 241 |
5150 | OQT 1000 | 160 | 1100 | 149 | 1030 | 15 | 321 |
5150 | OQT 700 | 240 | 1650 | 220 | 1520 | 10 | 461 |
5150 | OQT 400 | 312 | 2150 | 250 | 1720 | 8 | 601 |
5160 | Annealed | 105 | 724 | 40 | 276 | 17 | 197 |
5160 | OQT 1300 | 115 | 793 | 100 | 690 | 23 | 229 |
5160 | OQT 1000 | 170 | 1170 | 151 | 1040 | 14 | 341 |
5160 | OQT 700 | 263 | 1810 | 237 | 1630 | 9 | 514 |
5160 | OQT 400 | 322 | 2220 | 260 | 1790 | 4 | 627 |
6150 | Annealed | 96 | 662 | 59 | 407 | 23 | 197 |
6150 | OQT 1300 | 118 | 814 | 107 | 738 | 21 | 241 |
6150 | OQT 1000 | 183 | 1260 | 173 | 1190 | 12 | 375 |
6150 | OQT 700 | 247 | 1700 | 223 | 1540 | 10 | 495 |
6150 | OQT 400 | 315 | 2170 | 270 | 1860 | 7 | 601 |
8650 | Annealed | 104 | 717 | 56 | 386 | 22 | 212 |
8650 | OQT 1300 | 122 | 841 | 113 | 779 | 21 | 255 |
8650 | OQT 1000 | 176 | 1210 | 155 | 1070 | 14 | 363 |
8650 | OQT 700 | 240 | 1650 | 222 | 1530 | 12 | 495 |
8650 | OQT 400 | 282 | 1940 | 250 | 1720 | 11 | 555 |
8740 | Annealed | 100 | 690 | 60 | 414 | 22 | 201 |
8740 | OQT 1300 | 119 | 820 | 100 | 690 | 25 | 241 |
8740 | OQT 1000 | 175 | 1210 | 167 | 1150 | 15 | 363 |
8740 | OQT 700 | 228 | 1570 | 212 | 1460 | 12 | 461 |
8740 | OQT 400 | 290 | 2000 | 240 | 1650 | 10 | 578 |
9255 | Annealed | 113 | 780 | 71 | 490 | 22 | 229 |
9255 | O&T 1300 | 130 | 896 | 102 | 703 | 21 | 262 |
9255 | O&T 1000 | 181 | 1250 | 160 | 1100 | 14 | 352 |
9255 | O&T 700 | 260 | 1790 | 240 | 1650 | 5 | 534 |
9255 | O&T 400 | 310 | 2140 | 287 | 1980 | 2 | 601 |
Analysis: The rods are to be subjected to static direct normal tensile stress. Assuming that the threads at the ends of the rods are cut or rolled into the nominal diameter of the rods, the critical place for stress analysis is in the threaded portion.
Use the direct tensile stress formula, \sigma=F / A. We will first compute the design stress and then compute the required cross-sectional area to maintain the stress in service below that value. Finally, a standard thread will be specified from the data in Appendix Table A2–2(b) for American Standard threads.
TABLE A2–2 American Standard Screw Threads | ||||
B. American Standard thread dimensions, fractional sizes | ||||
Basic major diameter, D (in) |
Coarse threads: UNC | Fine threads: UNF | ||
Size-Threads per inch, n |
Tensile stress area (in^2) |
Size-Threads per inch, n |
Tensile stress area (in^2) |
|
\begin{array}{r}&0.2500 \\&0.3125 \\&0.3750 \\&0.4375\end{array} | \begin{array}{r}1 / 4-20 \\5 / 16-18 \\3 / 8-16 \\7 / 16-14\end{array} | \begin{array}{r}&0.0318 \\&0.0524 \\&0.0775 \\&0.1063\end{array} | \begin{array}{r}1 / 4-28 \\5 / 16-24 \\3 / 8-24 \\7 / 16-20\end{array} | \begin{array}{r}&0.0364 \\&0.0580 \\&0.0878 \\&0.1187\end{array} |
\begin{array}{r}&0.5000 \\&0.5625 \\&0.6250 \\&0.7500\end{array} | \begin{array}{r}1 / 2-13 \\9 / 16-12 \\5 / 8-11 \\3 / 4-10\end{array} | \begin{array}{r}&0.1419 \\&0.182 \\&0.226 \\&0.334\end{array} | \begin{array}{r}1 / 2-20 \\9 / 16-18 \\5 / 8-18 \\3 / 4-16\end{array} | \begin{array}{r}&0.1599 \\&0.203 \\&0.256 \\&0.373\end{array} |
\begin{array}{r}&0.8750 \\&1.000 \\&1.125 \\&1.250\end{array} | \begin{array}{r}&7 / 8-9 \\&1 \frac{1}{8}-8 \\&1 \frac{1}{8}-7 \\&1 \frac{1}{4}-7\end{array} | \begin{array}{r}&0.462 \\&0.606 \\&0.763 \\&0.969\end{array} | \begin{array}{r}&7 / 8-14 \\&1 \frac{1}{8}-12 \\&1 \frac{1}{8}-12 \\&1 \frac{1}{4}-12\end{array} | \begin{array}{r}&0.509 \\&0.663 \\&0.856 \\&1.073\end{array} |
\begin{array}{r}&1.375 \\&1.500 \\&1.750 \\&2.000\end{array} | \begin{array}{r}&1 \frac{3}{8}-6 \\&1 \frac{1}{2}-6 \\&1 \frac{3}{4}-5 \\&2-4 \frac{1}{2}\end{array} | \begin{array}{r}&1.155 \\&1.405 \\&1.90 \\&2.50\end{array} | \begin{array}{r}&1 \frac{3}{8}-12 \\&1 \frac{1}{2}-12\end{array} | \begin{array}{r}&1.315 \\&1.581\end{array} |
Results: In the basic tensile stress equation, \sigma=F / A. The stress state of the 3D stress element is \sigma_{1}=\sigma=F / A, \sigma_{2}=\sigma_{3}=0 .
From Section 5-4, Design for Static Loading, Equation (5-7) (\sigma_{1} \leq \frac{s_{y}}{N}) applies for MSST, the maximum shear stress theory. Letting \sigma_{1}=F / A=\sigma_{d},
\sigma_{\mathrm{d}}=\sigma_{1} \leq \frac{s_{y}}{N}
From Section 5-9, for the design factor, we can specify N=3, typical for general machine design with some uncertainty about installation procedures. Then,
\sigma_{d}=s_{y} / N=(71000 \mathrm{psi}) / 3=23667 \mathrm{psi}
Now we can solve for the required cross-sectional area of each rod.
A=F / \sigma_{d}=(32000 \mathrm{lb}) /\left(23667 \mathrm{lb} / \mathrm{in}^{2}\right)=1.35 \mathrm{in}^{2}
A standard size thread will now be specified. Appendix Table A2-2(b) lists the tensile stress area for American Standard threads. A 1 \frac{1}{2}-6 UNC thread ( 1 \frac{1}{2}-in-diameter rod with 6 threads per in) has a tensile stress area of 1.405 \mathrm{in}^{2} which should be satisfactory for this application.
Comments: The final design specifies a 1 \frac{1}{2}-in-diameter rod made from SAE 1040 cold-drawn steel with 1 \frac{1}{2}-6 UNC threads machined on each end to allow the attachment of the rods to the transformer and to the truss. Note that for this problem, both the MSST [Equation (5-7) (\sigma_{1} \leq \frac{s_{y}}{N})] and the distortion energy theory DET [Equation (5-10) (\sigma_{e} \leq \frac{s_{y}}{N})] yield the same result because the loading is uniaxial tension.