Question 5.DE.3: A part of a conveyor system for a production operation is sh...

A part of a conveyor system for a production operation is shown in Figure 5–17. The complete system will include several hundred hanger assemblies like this one. Design the horizontal bar that extends between two adjacent conveyor hangers and that supports a fixture at its midpoint. The empty fixture weighs 85 lb. A cast iron engine block weighing 225 lb is hung on the fixture to carry it from one process to another, where it is then removed. It is expected that the bar will experience several thousand cycles of loading and unloading of the engine blocks. Design Example 5–2 considered this same system with the objective of specifying the diameter of the pins. The pin at the middle of the horizontal bar where the fixture is hung has been specified to have a diameter of 0.50 in. Those at each end where the horizontal bar is connected to the conveyor hangers are each 0.375 in.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective: Design the horizontal bar for the conveyor system.
Given: The general arrangement is shown in Figure 5–17. The bar is simply supported at points 24 in apart. A vertical load that is alternately 85 lb and 310 lb (85 + 225) is applied at the middle of the bar through the pin connecting the fixture to the bar. The load will cycle between these two values many thousands of times in the expected life of the bar. The pin at the middle of the bar has a diameter of 0.50 in, while the pins at each end are 0.375 in.

Basic Design Decisions:
It is proposed to make the bar from steel in the form of a rectangular bar with the long dimension of its cross section vertical. Cylindrical holes will be machined on the neutral axis of the bar at the support points and at its center to receive cylindrical pins that will attach the bar to the conveyor carriers and to the fixture. Figure 5–18 shows the basic design for the bar.
The thickness of the bar, t, should be fairly large to provide a good bearing surface for the pins and to ensure lateral stability of the bar when subjected to the bending stress. A relatively thin bar would tend to buckle along its top surface where the stress is compressive. As a design decision, we will use a thickness of t = 0.50 in. The design analysis will determine the required height of the bar, h, assuming that the primary mode of failure is stress due to bending. Other possible modes of failure are discussed in the comments at the end of this example.
An inexpensive steel is desirable because several hundred bars will be made. We specify SAE 1020 hot-rolled steel having a yield strength of s_y = 30 ksi and an ultimate strength of s_u = 55 ksi (Appendix 3).

APPENDIX 3 Design Properties of Carbon and Alloy Steel
Material
designation
(SAE number)
Condition Tensile
strength
Yield
strength
Ductility
(percent
elongation
in 2 in)
Brinell
hardness (HB)
(ksi) (MPa) (ksi) (MPa)
1020 Hot-rolled 55 379 30 207 25 111
1020 Cold-drawn 61 420 51 352 15 122
1020 Annealed 60 414 43 296 38 121
1040 Hot-rolled 72 496 42 290 18 144
1040 Cold-drawn 80 552 71 490 12 160
1040 OQT 1300 88 607 61 421 33 183
1040 OQT 400 113 779 87 600 19 262
1050 Hot-rolled 90 620 49 338 15 180
1050 Cold-drawn 100 690 84 579 10 200
1050 OQT 1300 96 662 61 421 30 192
1050 OQT 400 143 986 110 758 10 321
1117 Hot-rolled 65 448 40 276 33 124
1117 Cold-drawn 80 552 65 448 20 138
1117 WQT 350 89 614 50 345 22 178
1137 Hot-rolled 88 607 48 331 15 176
1137 Cold-drawn 98 676 82 565 10 196
1137 OQT 1300 87 600 60 414 28 174
1137 OQT 400 157 1083 136 938 5 352
1144 Hot-rolled 94 648 51 352 15 188
1144 Cold-drawn 100 690 90 621 10 200
1144 OQT 1300 96 662 68 496 25 200
1144 OQT 400 127 876 91 627 16 277
1213 Hot-rolled 55 379 33 228 25 110
1213 Cold-drawn 75 517 58 340 10 150
12L13 Hot-rolled 57 393 34 234 22 114
12L13 Cold-drawn 70 483 60 414 10 140
1340 Annealed 102 703 63 434 26 207
1340 OQT 1300 100 690 75 517 25 235
1340 OQT 1000 144 993 132 910 17 363
1340 OQT 700 221 1520 197 1360 10 444
1340 OQT 400 285 1960 234 1610 8 578
3140 Annealed 95 655 67 462 25 187
3140 OQT 1300 115 792 94 648 23 233
3140 OQT 1000 152 1050 133 920 17 311
3140 OQT 700 220 1520 200 1380 13 461
3140 OQT 400 280 1930 248 1710 11 555
4130 Annealed 81 558 52 359 28 156
4130 WQT 1300 98 676 89 614 28 202
4130 WQT 1000 143 986 132 910 16 302
4130 WQT 700 208 1430 180 1240 13 415
4130 WQT 400 234 1610 197 1360 12 461
4140 Annealed 95 655 54 372 26 197
4140 OQT 1300 117 807 100 690 23 235
4140 OQT 1000 168 1160 152 1050 17 341
4140 OQT 700 231 1590 212 1460 13 461
4140 OQT 400 290 2000 251 1730 11 578
4150 Annealed 106 731 55 379 20 197
4150 OQT 1300 127 880 116 800 20 262
4150 OQT 1000 197 1360 181 1250 11 401
4150 OQT 700 247 1700 229 1580 10 495
4150 OQT 400 300 2070 248 1710 10 578
4340 Annealed 108 745 68 469 22 217
4340 OQT 1300 140 965 120 827 23 280
4340 OQT 1000 171 1180 158 1090 16 363
4340 OQT 700 230 1590 206 1420 12 461
4340 OQT 400 283 1950 228 1570 11 555
5140 Annealed 83 572 42 290 29 167
5140 OQT 1300 104 717 83 572 27 207
5140 OQT 1000 145 1000 130 896 18 302
5140 OQT 700 220 1520 200 1380 11 429
5140 OQT 400 276 1900 226 1560 7 534
5150 Annealed 98 676 52 359 22 197
5150 OQT 1300 116 800 102 700 22 241
5150 OQT 1000 160 1100 149 1030 15 321
5150 OQT 700 240 1650 220 1520 10 461
5150 OQT 400 312 2150 250 1720 8 601
5160 Annealed 105 724 40 276 17 197
5160 OQT 1300 115 793 100 690 23 229
5160 OQT 1000 170 1170 151 1040 14 341
5160 OQT 700 263 1810 237 1630 9 514
5160 OQT 400 322 2220 260 1790 4 627
6150 Annealed 96 662 59 407 23 197
6150 OQT 1300 118 814 107 738 21 241
6150 OQT 1000 183 1260 173 1190 12 375
6150 OQT 700 247 1700 223 1540 10 495
6150 OQT 400 315 2170 270 1860 7 601
8650 Annealed 104 717 56 386 22 212
8650 OQT 1300 122 841 113 779 21 255
8650 OQT 1000 176 1210 155 1070 14 363
8650 OQT 700 240 1650 222 1530 12 495
8650 OQT 400 282 1940 250 1720 11 555
8740 Annealed 100 690 60 414 22 201
8740 OQT 1300 119 820 100 690 25 241
8740 OQT 1000 175 1210 167 1150 15 363
8740 OQT 700 228 1570 212 1460 12 461
8740 OQT 400 290 2000 240 1650 10 578
9255 Annealed 113 780 71 490 22 229
9255 O&T 1300 130 896 102 703 21 262
9255 O&T 1000 181 1250 160 1100 14 352
9255 O&T 700 260 1790 240 1650 5 534
9255 O&T 400 310 2140 287 1980 2 601

Analysis: The Goodman criterion applies for completing the design analysis because fluctuating normal stress due to bending is experienced by the bar. Equation (5–32) (\frac{K_{t} \sigma_{a}^{\prime}}{s_{n}^{\prime}}+\frac{\sigma_{m}^{\prime}}{s_{u}}=\frac{1}{N}) will be used:

\frac{1}{N}=\frac{\sigma_{m}}{s_{u}}+\frac{K_{t} \sigma_{a}}{s_{n}^{\prime}}

In general, the bending stress in the bar will be computed from the flexure formula:
\sigma=M / S
where M = bending moment
S = section modulus of the cross section of the bar = th^2/6 (Appendix 1)

APPENDIX 1 Properties of Areas
\begin{array}{ll}A=\text { area } & r=\text { radius of gyration }=\sqrt{I / A} \\I=\text {moment of inertia } & J=\text { polar moment of inertia } \\S=\text { section modulus } &Z_{p}=\text { polar section modulus }\end{array}
\begin{array}{ll}A=\pi D^{2} / 4 & r=D / 4 \\I=\pi D^{4} / 64 & J=\pi D^{4} / 32 \\S=\pi D^{3} / 32 & Z_{p}=\pi D^{3} / 16\end{array}
\begin{array}{ll}A=\pi\left(D^{2}-d^{2}\right) / 4 & r=\frac{\sqrt{\left(D^{2}+d^{2}\right)}}{4} \\I=\pi\left(D^{4}-d^{4}\right) / 64 & J=\pi\left(D^{4}-d^{4}\right) / 32 \\S=\pi\left(D^{4}-d^{4}\right) / 32 D & Z_{p}=\pi\left(D^{4}-d^{4}\right) / 16 D\end{array}
\begin{aligned}&A=H^{2} \quad\quad\quad r=H / \sqrt{12} \\&I=H^{4} / 12 \\&S=H^{3} / 6\end{aligned}
\begin{array}{ll}A=B H & r_{x}=H / \sqrt{12} \\I_{x}=B H^{3} / 12 & r_{y}=B / \sqrt{12} \\I_{y}=H B^{3} / 12 & \\S_{x}=B H^{2} / 6 & \\S_{y}=H B^{2} / 6 &\end{array}
\begin{aligned}&A=B H-b h \\&I_{x}=\frac{B H^{3}-b h^{3}}{12} \quad S_{x}=\frac{B H^{3}-b h^{3}}{6 H}\quad r_{x}=0.289 \sqrt{\frac{B H^{3}-b h^{3}}{B H-b h}} \\&I_{y}=\frac{H B^{3}-h b^{3}}{12} \quad S_{y}=\frac{H B^{3}-h b^{3}}{6 B} \quad r_{y}=0.289 \sqrt{\frac{H B^{3}-h b^{3}}{H B-h b}}\end{aligned}
\begin{aligned}&A=B H / 2 \quad\quad\quad r=H / \sqrt{18} \\&I=B H^{3} / 36 \\&S=B H^{2} /24\end{aligned}
\begin{aligned}&A=\pi D^{2} / 8 \quad\quad\quad r=0.132 D \\&I=0.007 D^{4} \\&S=0.024D^{3}\end{aligned}
\begin{aligned}&A=0.866 D^{2} \quad\quad\quad r=0.264 D \\&I=0.06 D^{4} \\&S=0.12 D^{3}\end{aligned}
\begin{aligned}A &=H(a+B) / 2 \\y &=\frac{H(a+2 B)}{3(a+B)} \quad\quad\quad\quad\quad\quad S=\frac{H^{2}\left(a^{2}+4 a B+B^{2}\right)}{12(a+2 B)} \\I_{x} &=\frac{H^{3}\left(a^{2}+4a B+B^{2}\right)}{36(a+B)} \quad\quad r=\frac{H^{2}\left(a^{2}+4 a B+B^{2}\right)}{18(a+B)^{2}} \\y &=\underset{\text { Maximum distance from } x \text {-axis to }}{\text { outer surface of section }}\end{aligned}
\begin{aligned}&A=\pi b h \\&I=\frac{\pi h^{3} b}{4} \\&S=\frac{\pi h^{2} b}{4} \\&r=h / 2\end{aligned}

Our approach will be to first determine the values for both the mean and the alternating bending moments experienced by the bar at its middle. Then the yield and endurance limit values for the steel will be found. Reference 5 in Chapter 3 indicates that a small hole, with diameter d, in a plate-beam does not weaken the beam if the ratio d/h is less than 0.50. That is, if d/h 6 0.50, K_t = 1.0. We will make that assumption and check it later. Based on the application conditions, let’s use N = 4 as advised in item 4 in Section 5–9 because the actual use pattern for this conveyor system in a factory environment is somewhat uncertain and shock loading is likely.

Bending Moments Figure 5–18 shows the shearing force and bending moment diagrams for the bar when carrying just the fixture and then both the fixture and the engine block. The maximum bending moment occurs at the middle of the bar where the load is applied. The values are M_{max} = 1860 lb . in with the engine block on the fixture and M_{min} = 510 lb . in for the fixture alone. Now the values for the mean and alternating bending moments are calculated using modified forms of Equations (5–1) (\sigma_{m}=\left(\sigma_{\max }+\sigma_{\min }\right) / 2) and (5–2) (\sigma_{a}=\left(\sigma_{\max }-\sigma_{\min }\right) / 2):

\begin{aligned}&M_{m}=\left(M_{\max }+M_{\min }\right) / 2=(1860+510) / 2=1185\mathrm{lb} \cdot \mathrm{in} \\&M_{a}=\left(M_{\max }-M_{\min }\right) /2=(1860-510) / 2=675 \mathrm{lb} \cdot \mathrm{in}\end{aligned}
The stresses will be found from \sigma_{m}=\frac{M_{m}}{S} and \sigma_{a}=\frac{M_{a}}{S}. Note that the stress element at the location of interest is subjected to uniaxial tension/compression without any shear. For 1 \mathrm{D} loading.
\begin{aligned}&\sigma_{m 1}=\sigma_{m}=\frac{M_{m}}{S}, \sigma_{m 2}=\sigma_{m 3}=0 \\&\sigma_{a 1}=\sigma_{a}=\frac{M_{a}}{S}, \sigma_{a 2}=\sigma_{a 3}=0\end{aligned}
As such, we can now apply the Goodman criterion from Equation (5-32) (\frac{K_{t} \sigma_{a}^{\prime}}{s_{n}^{\prime}}+\frac{\sigma_{m}^{\prime}}{s_{u}}=\frac{1}{N}) with
\begin{gathered}\sigma_{m}^{\prime}=\sigma_{m}=\frac{M_{m}}{S} \\\sigma_{a}^{\prime}=\sigma_{a}=\frac{M_{a}}{S}\end{gathered}

Material Strength Values The material strength properties required are the ultimate strength s_{u} and the, estimated actual endurance limit s_{n}^{\prime}. We know that the ultimate strength s_{u}=55 \mathrm{ksi}. We now find s_{n}^{\prime} using the method outlined in Section 5-6.

Size factor, C s: From Section 5-6, Equation (5-10) (\sigma_{e} \leq \frac{s_{y}}{N}) defines an equivalent diameter, D_{e}, for the rectangular section as
D_{e}=0.808 \sqrt{h t}
We have specified the thickness of the bar to be t=0.50 in. The height is unknown at this time. As an estimate, let’s assume h \approx 2.0 \mathrm{in}. Then,
D_{e}=0.808 \sqrt{h t}=0.808 \sqrt{(2.0 \mathrm{in})(0.50 \mathrm{in})}=0.808 \mathrm{in}
We can now use Figure 5-12 or the equations in Table 5-4 to find C_{s}=0.90. This value should be checked later after a specific height dimension is proposed.

TABLE 5–4 Size Factors
U.S. customary units
Size rangeFor D in inches
D \leq 0.30 C_{s}=1.0
0.30<D \leq 2.0 C_{s}=(D / 0.3)^{-0.11}
2.0<D<10.0 C_{s}=0.859-0.02125 D
SI units
Size range For D in mm
D \leq 7.62 C_{s}=1.0
7.62<D \leq 50 C_{s}=(D / 7.62)^{-0.11}
50<D<250 C_{s}=0.859-0.000837 D

Material factor,C_{m}: Use C_{m}=1.0 for the wrought, hot-rolled steel.
Stress-type factor, C_{\text {sf }} Use C_{\text {st }}=1.0 for repeated bending stress.
Reliability factor, C_{R}: A high reliability is desired. Let’s use C_{R}=0.75 to achieve a reliability of 0.999 as indicated in Table 5-3.

Table 5–3 Approximate Reliability
Factors, C_R
Desired reliability C_R
0.5 1
0.9 0.91
0.99 0.81
0.999 0.75

The value of s_n = 20 ksi is found from Figure 5–11 for hot-rolled steel having an ultimate strength of 55 ksi.
Now, applying Equation (5–21) (s_{n}^{\prime}=s_{n}\left(C_{m}\right)\left(C_{s t}\right)\left(C_{R}\right)\left(C_{s}\right)) from Section 5–6, we have

s_{n}^{\prime}=\left(C_{m}\right)\left(C_{s t}\right)\left(C_{R}\right)\left(C_{s}\right) s_{n}=(1.0)(1.0)(0.75)(0.90)(20 \mathrm{ksi})=13.5 \mathrm{ksi}

Solution for the Required Section Modulus At this point, we have specified all factors in Equation (5–32) (\frac{K_{t} \sigma_{a}^{\prime}}{s_{n}^{\prime}}+\frac{\sigma_{m}^{\prime}}{s_{u}}=\frac{1}{N}) except the section modulus of the cross section of the bar that is involved in each expression for stress
as shown above. We will now solve the equation for the required value of S.
Recall that we showed earlier that \sigma_{m}=M_{m} / S \text { and } \sigma_{a}=M_{d} / S \text {. } Then

\begin{aligned}\frac{1}{N} &=\frac{\sigma_{m}}{s_{u}}+\frac{K_{t} \sigma_{a}}{s_{n}^{\prime}}=\frac{M_{m}}{S s_{u}}+\frac{K_{t} M_{a}}{S s_{n}^{\prime}}=\frac{1}{S}\left[\frac{M_{m}}{s_{u}}+\frac{K_{t} M_{a}}{s_{n}^{\prime}}\right] \\S&=N\left[\frac{M_{m}}{s_{u}}+\frac{K_{t} M_{a}}{s_{n}^{\prime}}\right]=4\left[\frac{1185 \mathrm{lb} \cdot \mathrm{in}}{55000 \mathrm{lb} / \mathrm{in}^{2}}+\frac{1.0(675 \mathrm{lb} \cdot \mathrm{in})}{13500 \mathrm{lb} / \mathrm{in}^{2}}\right] \\S &=0.286 \mathrm{in}^{3}\end{aligned}

Results: The required section modulus has been found to be S = 0.286 in^3. We observed earlier that S = th^2/6 for a solid rectangular cross section, and we decided to use this form to find an initial estimate for the required height of the section, h. We have specified t = 0.50 in. Then the estimated minimum acceptable value for the height h is

h=\sqrt{6 S / t}=\sqrt{6\left(0.286 \mathrm{in}^{3}\right) /(0.50 \mathrm{in})}=1.85 \mathrm{in}

The table of preferred basic sizes in the decimal-inch system (Table A2–1) recommends h = 2.00 in.

TABLE A2–1 Preferred Basic Sizes
Fractional (in) Decimal (in) SI metric (mm)
\begin{array}{ll}1 / 64 & 0.015625 \\1 / 32 & 0.03125 \\1 / 16 & 0.0625 \\3 / 32 & 0.09375\\1 / 8 & 0.1250\end{array} \begin{array}{ll}5 & 5.000 \\5 \frac{1}{4} & 5.250 \\5 \frac{1}{2} & 5.500 \\5 \frac{3}{4}& 5.750 \\6 & 6.000\end{array} \begin{array}{rrr}0.010 & 2.00 & 8.50 \\0.012 & 2.20 & 9.00 \\0.016 & 2.40 & 9.50 \\0.020&2.60 & 10.00 \\0.025 & 2.80 & 10.50\end{array} \begin{array}{ll}1.0 & 40 \\1.1 & 45 \\1.2 & 50 \\1.4 & 55 \\1.6 & 60\end{array}
\begin{array}{cc}5 / 32 & 0.15625 \\3 / 16 & 0.1875 \\1 / 4 & 0.2500 \\5 / 16 & 0.3125 \\3/ 8 & 0.3750\end{array} \begin{array}{ll}6 \frac{1}{2} & 6.500 \\7 & 7.000 \\7 \frac{1}{2} & 7.500 \\8 & 8.000 \\8\frac{1}{2} & 8.500\end{array} \begin{array}{lll}0.032 & 3.00 & 11.00 \\0.040 & 3.20 & 11.50 \\0.05 & 3.40 & 12.00 \\0.06& 3.60 & 12.50 \\0.08 & 3.80 & 13.00\end{array} \begin{array}{ll}1.8 & 70 \\2.0 & 80 \\2.2 & 90 \\2.5 & 100 \\2.8 & 110\end{array}
\begin{array}{cc}7 / 16 & 0.4375 \\1 / 2 & 0.5000 \\9 / 16 & 0.5625 \\5 / 8 & 0.6250\end{array} \begin{array}{lr}9 & 9.000 \\9 \frac{1}{2} & 9.500 \\10 & 10.000 \\10 \frac{1}{2} & 10.500\end{array} \begin{array}{lll}0.10 & 4.00 & 13.50 \\0.12 & 4.20 & 14.00 \\0.16 & 4.40 & 14.50 \\0.20 &4.60 & 15.00\end{array} \begin{array}{ll}3.0 & 120 \\3.5 & 140 \\4.0 & 160 \\4.5 & 180\end{array}
\begin{array}{cc}11 / 16 & 0.6875 \\3 / 4 & 0.7500 \\7 / 8 & 0.8750\end{array} \begin{array}{ll}11 & 11.000 \\11 \frac{1}{2} & 11.500 \\12 & 12.000\end{array} \begin{array}{lll}0.24 & 4.80 & 15.50 \\0.30 & 5.00 & 16.00 \\0.40 & 5.20 & 16.50\end{array} \begin{array}{ll}5.0 & 200 \\5.5 & 220 \\6 & 250\end{array}
\begin{array}{cc}1 & 1.000 \\1 \frac{1}{4} & 1.250 \\1 \frac{1}{2} & 1.500 \\1 \frac{3}{4}& 1.750\end{array} \begin{array}{ll}12 \frac{1}{2} & 12.500 \\13 & 13.000 \\13 \frac{1}{2} & 13.500 \\14 &14.000\end{array} \begin{array}{lll}0.50 & 5.40 & 17.00 \\0.60 & 5.60 & 17.50 \\0.80 & 5.80 & 18.00 \\1.00 &6.00 & 18.50\end{array} \begin{array}{rr}7 & 280 \\8 & 300 \\9 & 350 \\10 & 400\end{array}
\begin{array}{cc}2 & 2.000 \\2 \frac{1}{4} & 2.250 \\2 \frac{1}{2} & 2.500 \\2 \frac{3}{4}& 2.750\end{array} \begin{array}{ll}14 \frac{1}{2} & 14.500 \\15 & 15.000 \\15 \frac{1}{2} & 15.500 \\16 &16.000\end{array} \begin{array}{lll}1.20 & 6.50 & 19.00 \\1.40 & 7.00 & 19.50 \\1.60 & 7.50 & 20.00 \\1.80 &8.00 &\end{array} \begin{array}{ll}11 & 450 \\12 & 500 \\14 & 550 \\16 & 600\end{array}
\begin{array}{ll}3 & 3.000 \\3 \frac{1}{4} & 3.250 \\3 \frac{1}{2} & 3.500 \\3 \frac{3}{4}& 3.750\end{array} \begin{array}{ll}16 \frac{1}{2} & 16.500 \\17 & 17.000 \\17 \frac{1}{2} & 17.500 \\18 &18.000\end{array} \begin{array}{cc}18 & 700 \\20 & 800 \\22 & 900 \\25 & 1000\end{array}
\begin{array}{cc}4 & 4.000 \\4 \frac{1}{4} & 4.250 \\4 \frac{1}{2} & 4.500 \\4 \frac{3}{4}& 4.750\end{array} \begin{array}{ll}18 \frac{1}{2} & 18.500 \\19 & 19.000 \\19 \frac{1}{2} & 19.500 \\20 &20.000\end{array} \begin{aligned}&28 \\&30 \\&35\end{aligned}

We should first check the earlier assumption that the ratio d/h < 0.50 at the middle of the bar. The actual ratio is

d / h=(0.50 \mathrm{in}) /(2.00 \mathrm{in})=0.25 \text { (okay) }
This indicates that our earlier assumption that K_{t}=1.0 is correct. Also, our assumed value of C_{s}=0.90 is correct because the actual height, h=2.0 in, is identical to our assumed value.

We will now compute the actual value for the section modulus of the cross section with the hole in it. See Figure A15-6 in the appendix.
S=\frac{t\left(h^{3}-d^{3}\right)}{6 h}=\frac{(0.50 \mathrm{in})\left[(2.00 \mathrm{in})^{3}-(0.50 \mathrm{in})^{3}\right]}{6(2.00 \mathrm{in})}=0.328 \mathrm{in}^{3}
This value is larger than the minimum required value of 0.286 \mathrm{in}^{3}. Therefore, the size of the cross section is satisfactory with regard to stress due to bending.

Final Design Decisions and Comments

In summary, the following are the design decisions for the horizontal bar of the conveyor hanger shown in Figure 5–18.

1. Material: SAE 1020 hot-rolled steel.
2. Size: Rectangular cross section. Thickness t = 0.50 in; height h = 2.00 in.
3. Overall design: Figure 5–18 shows the basic features of the bar.
4. Other considerations: Remaining to be specified are the tolerances on the dimensions for the bar and the finishing of its surfaces. The potential for corrosion should be considered and may call for paint, plating, or some other corrosion protection. The size of the cross section can likely be
used with the as-received tolerances on thickness and height, but this is somewhat dependent on the design of the fixture that holds the engine block and the conveyor hangers. So the final tolerances will be left open pending later design decisions. The holes in the bar for the pins should be designed to produce a close sliding fit with the pins, and the details of specifying the tolerances on the hole diameters for such a fit are discussed in Chapter 13. See also the discussion on lug joints in Section 3–21.
5. Other possible modes of failure: The analysis used in this problem assumed that failure would occur due to the bending stresses in the rectangular bar. The dimensions were specified to preclude this from happening. Other possible modes are discussed as follows:
a. Deflection of the bar as an indication of stiffness: The type of conveyor system described in this problem should not be expected to have extreme rigidity because moderate deflection of members should not impair its operation. However, if the horizontal bar deflects so much that it appears to be rather flexible, it would be deemed unsuitable. This is a subjective judgment. We can use Case (a) in Table A14–1 to compute the deflection.

TABLE A14–1 Beam-Deflection Formulas for Simply Supported Beams
\mathrm{y}_{B}=\mathrm{y}_{\max }=\frac{-P L^{3}}{48 E I} \quad \text { at center }
Between A and B;
\mathrm{y}=\frac{-P x}{48 E l}\left(3 L^{2}-4 x^{2}\right)
\begin{gathered}y_{\max }=\frac{-P a b(L+b) \sqrt{3 a(L+b)}}{27 E I L} \\\text { at }x_{1}=\sqrt{a(L+b) / 3} \\y_{B}=\frac{-P a^{2} b^{2}}{3 E / L} \text { at load }\end{gathered}
BetweenA and B (the longer segment):
y=\frac{-P b x}{6 E / L}\left(L^{2}-b^{2}-x^{2}\right)
Between B and C (the shorter segment):
y=\frac{-P a v}{6 E I L}\left(L^{2}-v^{2}-a^{2}\right)
At end of overhang at D :
y_{D}=\frac{P a b c}{6 E I L}(L+a)
\begin{gathered}y_{E}=y_{\max }=\frac{-P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) \text {at center } \\y_{B}=y_{C}=\frac{-P a^{2}}{6 E I}(3 L-4 a) \text { at loads }\end{gathered}
Between A and B :
y=\frac{-P x}{6 E I}\left(3 a L-3 a^{2}-x^{2}\right)
Between B and C :
y=\frac{-P a}{6 E I}\left(3 L x-3 x^{2}-a^{2}\right)
y_{B}=y_{\max }=\frac{-5 w L^{4}}{384 E l}=\frac{-5 W L^{3}}{384 E I} \text { at center }
Between A and B :
y=\frac{-w x}{24 E l}\left(L^{3}-2 L x^{2}+x^{3}\right)
At D at end:
y_{D}=\frac{w L^{3} a}{24 E I}
Between A and B :
y=\frac{-w x}{24 E I L}\left[a^{2}(2 L-a)^{2}-2 a x^{2}(2 L-a)+L x^{3}\right]
Between B and C :
y=\frac{-w a^{2}(L-x)}{24 E I L}\left(4 L x-2 x^{2}-a^{2}\right)
M_{B}=\text { concentrated moment at } B
Between A and B :
y=\frac{-M_{B}}{6 E I}\left[\left(6 a-\frac{3 a^{2}}{L}-2 L\right) x-\frac{x^{3}}{L}\right]
Between B and C :
y=\frac{M_{B}}{6 E I}\left[3 a^{2}+3 x^{2}-\frac{x^{3}}{L}-\left(2 L+\frac{3 a^{2}}{L}\right) x\right]
At C at end of overhang:
y_{C}=\frac{-P a^{2}}{3 E l}(L+a)
At D, maximum upward deflection:
y_{D}=0.06415 \frac{P a L^{2}}{E l}
At C at center:
y=\frac{-W L-2 a)^{3}}{384 E l}\left[\frac{5}{L}(L-2 a)-\frac{24}{L}\left(\frac{a^{2}}{L-2 a}\right)\right]
At A and E at ends:
y=\frac{-W L-2 a)^{3} a}{24 E I L}\left[-1+6\left(\frac{a}{L-2 a}\right)^{2}+3\left(\frac{a}{L-2 a}\right)^{3}\right]
At C at center:
y=\frac{P L^{2} a}{8 E I}
At A and E at ends at loads:
y=\frac{-P a^{2}}{3 E I}\left(a+\frac{3}{2} L\right)
At B :
y=0.03208 \frac{w a^{2} L^{2}}{E l}
At D at end:
y=\frac{-w a^{3}}{24 E l}(4 L+3 a)

y=F L^{3} / 48 E I
In this design,
\begin{aligned}&F=310 \mathrm{lb}=\text { maximum load on the bar } \\&L=24.0 \mathrm{in}=\text { distance between supports } \\&E=30 \times 10^{6} \mathrm{psi}=\text { modulusof elasticity of steel } \\&I=t h^{3} / 12=\text { moment of inertia of the cross section }\\&I=(0.50 \mathrm{in})(2.00 \mathrm{in})^{3} / 12=0.333 \mathrm{in}^{4}\end{aligned}
Then,
y=\frac{(310 \mathrm{lb})(24.0 \mathrm{in})^{3}}{48\left(30 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2}\right)\left(0.333 \mathrm{in}^{4}\right)}=0.0089 \mathrm{in}
This value seems satisfactory. In Section 5-11, some guidelines were given for deflection of machine elements. One stated that bending deflections for general machine parts should be limited to the range of 0.0005 to 0.003 in/in of beam length. For the bar in this design, the ratio of y /L can be compared to this range:
y /L = (0.0089 in)/(24.0 in) = 0.0004 in/in of beam length

Therefore, this deflection is well within the recommended range.
b. Buckling of the bar: When a beam with a tall, thin, rectangular cross section is subjected to bending, it would be possible for the shape to distort due to buckling before the bending stresses would cause failure of the material. This is called elastic instability, and a complete discussion is beyond the scope of this book. However, Reference 14 shows a method of computing the critical buckling load for this kind of loading. The pertinent geometrical feature is the ratio of the thickness t of the bar to its height h. It can be shown that the bar as designed will not buckle.
c. Bearing stress on the inside surfaces of the holes in the beam: Pins transfer loads between the bar and the mating elements in the conveyor system. It is possible that the bearing stress at the pin–hole interface could be large, leading to excessive deformation or wear. Reference 4 in Chapter 3 indicates that the allowable bearing stress for a steel pin in a steel hole is 0.90s_y.

\sigma_{b d}=0.90 \mathrm{~s}_{y}=0.90(30000 \mathrm{psi})=27000 \mathrm{psi}
The actual bearing stress at the center hole is found using the projected area, D_{p} t.
\sigma_{b}=F / D_{p} t=(310 \mathrm{lb}) /(0.50  \mathrm{in})(0.50 \mathrm{in})=1240 \mathrm{psi}
Thus the pin and hole are very safe for bearing.

5-18
5-12
5-11a
5-11b
A15-6

Related Answered Questions