Question 5.DE.4: A bracket is made by welding a rectangular bar to a circular...

A bracket is made by welding a rectangular bar to a circular rod, as shown in Figure 5–19. Design the bar and the rod to carry a static load of 250 lb.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective: The design process will be divided into two parts:
1. Design the rectangular bar for the bracket.
2. Design the circular rod for the bracket.

Rectangular Bar
Given: The bracket design is shown in Figure 5–19. The rectangular bar carries a load of 250 lb vertically downward at its end. An effectively fixed support is provided by the weld at its left end where the loads are transferred to the circular rod. The bar acts as a cantilever beam, 12 in long. The design task is to specify the material for the bar and the dimensions of its cross section.

Basic Design Decisions: We will use steel for both parts of the bracket because of its relatively high stiffness, the ease of welding,
and the wide range of strengths available. Let’s specify SAE 1340 annealed steel having s_y = 63 ksi and s_u = 102 ksi (Appendix 3). The steel is highly ductile, with a 26% elongation.

The objective of the design analysis that follows is to determine the size of the cross section of the rectangular bar. Assuming that the bar acts as a cantilever and the loading and processing conditions are well known, we will use a design factor of N = 2 because of the static load.

Analysis and Results: The free-body diagram of the cantilever bar is shown in Figure 5–20, along with the shearing force and bending moment diagrams. This should be a familiar case, leading to the judgment that the maximum tensile stress occurs at the top of the bar near to where it is supported by the circular rod. This point is labeled element A in Figure 5–20. The maximum bending moment there is M = 3000 lb . in.
The stresses at A are

\sigma_{1}=\sigma_{A}=\frac{M}{S}, \sigma_{2}=\sigma_{3}=0
where S= section modulus of the cross section of the bar.
We will first compute the minimum allowable value for S and then determine the dimensions for the cross section.

The MSST criterion, Equation (5-7) (\sigma_{1} \leq \frac{s_{y}}{N}), applies because of the static loading. We will first compute the design stress from
\begin{aligned}&\sigma_{d}=s_{y} / N \\&\sigma_{d}=s_{y} / N=(63000 \mathrm{psi}) /2=31500 \mathrm{psi}\end{aligned}
Now we must ensure that the expected maximum stress \sigma_{A}=M / S does not exceed the design stress. We can substitute \sigma_{A}=\sigma_{d} and solve for S.
S=M / \sigma_{d}=(3000 \mathrm{lb} \cdot \mathrm{in}) /\left(31500 \mathrm{lb} /\mathrm{in}^{2}\right)=0.095 \mathrm{in}^{3}
The relationship for S is
S=t h^{2} / 6
As a design decision, let’s specify the approximate proportion for the cross-sectional dimensions to be h=3 t. Then,
S=t h^{2} / 6=t(3 t)^{2} / 6=9 t^{3} / 6=1.5 t^{3}
The required minimum thickness is then
t={ }^{3} \sqrt{S / 1.5}={ }^{3} \sqrt{\left(0.095 \mathrm{in}^{3}\right) / 1.5}=0.399\mathrm{in}
The nominal height of the cross section should be, approximately,
h=3 t=3(0.399 \mathrm{in})=1.20 \mathrm{in}

Final Design Decisions and Comments: In the fractional-inch system, preferred sizes are selected to be t=3 / 8 in =0.375 in and h=1 \frac{1}{4} in =1.25 in (see Table A2-1). Note that we chose a slightly smaller value for t but a slightly larger value for h. We must check to see that the resulting value for S is satisfactory.
S=t h^{2} / 6=(0.375 \mathrm{in})(1.25 \mathrm{in})^{2} / 6=0.0977 \mathrm{in}^{3}

This is larger than the required value of 0.095 in^3, so the design is satisfactory.
Part (b) of Figure 5–20 shows a finite-element analysis (FEA) model for the rectangular bar only.
The variations in color on the bar represent stress levels with red being the highest and blue the lowest.
This model verifies the observation that the highest stress is at Element A.

Circular Rod

Given: The bracket design is shown in Figure 5–19. The design task is to specify the material for the rod and the diameter of its cross section.
Basic Design Decisions: Let’s specify SAE 1340 annealed steel, the same as that used for the rectangular bar. Its properties are
s_y = 63 ksi and s_u = 102 ksi.
Analysis and Results: Figure 5–21 is the free-body diagram for the rod. The rod is loaded at its left end by the reactions at the end of the rectangular bar, namely, a downward force of 250 lb and a moment of 3000 lb . in. The figure shows that the moment acts as a torque on the circular rod, and the 250-lb force causes bending with a maximum bending moment of 2000 lb . in at the right end. Reactions are provided by the weld at its right end where the loads are transferred to the support. The rod then is subjected to a combined stress due to torsion and bending. Element B on the top of the rod is subjected to the maximum combined stress.

The manner of loading on the circular rod is identical to that analyzed earlier. It was shown that when only bending and torsional shear occur, a procedure called the equivalent torque method can be used to complete the analysis. First we define the equivalent torque, T_e:

T_{e}=\sqrt{M^{2}+T^{2}}=\sqrt{(2000 \mathrm{lb} \cdot \mathrm{in})^{2}+(3000\mathrm{lb} \cdot \mathrm{in})^{2}}=3606 \mathrm{lb} \cdot\mathrm{in}
Then the shear stress in the bar is
\tau=T_{e} / Z_{p}
where Z_{p}= polar section modulus
For a solid circular rod,
Z_{p}=\pi D^{3} / 16
Our approach is to determine the design shear stress and T_{e} and then solve for Z_{p}. The maximum shear stress theory of failure can be applied and the design shear stress is
\tau_{d}=0.50 \mathrm{~s}_{y} / N=(0.5)(63000 \mathrm{psi}) / 2=15750 \mathrm{psi}
We let \tau=\tau_{d} and solve for Z_{p} :
Z_{p}=T_{e} / \tau_{d}=(3606 \mathrm{lb} \cdot \mathrm{in}) /\left(15750 \mathrm{lb} /\mathrm{in}^{2}\right)=0.229 \mathrm{in}^{3}

Now that we know Z_{p}, we can compute the required diameter from
D=\sqrt[3]{16 Z_{p} / \pi}=\sqrt[3]{16\left(0.229 \mathrm{in}^{3}\right) / \pi}=1.053\mathrm{in}
This is the minimum acceptable diameter for the rod.
Final Design Decisions and Comments: The circular rod is to be welded to the side of the rectangular bar, and we have specified the height of the bar to be 1 \frac{1}{4} in. Let’s specify the diameter of the circular rod to be machined to 1.10 in. This will allow welding all around its periphery.

Figure 5-21(b) shows a finite-element analysis (FEA) model for the circular bar only. The variations in color on the bar represent stress levels with red being the highest and blue the lowest. This model verifies the observation that the highest stress is at Element B.

 

APPENDIX 3 Design Properties of Carbon and Alloy Steel
Material
designation
(SAE number)
Condition Tensile
strength
Yield
strength
Ductility
(percent
elongation
in 2 in)
Brinell
hardness (HB)
(ksi) (MPa) (ksi) (MPa)
1020 Hot-rolled 55 379 30 207 25 111
1020 Cold-drawn 61 420 51 352 15 122
1020 Annealed 60 414 43 296 38 121
1040 Hot-rolled 72 496 42 290 18 144
1040 Cold-drawn 80 552 71 490 12 160
1040 OQT 1300 88 607 61 421 33 183
1040 OQT 400 113 779 87 600 19 262
1050 Hot-rolled 90 620 49 338 15 180
1050 Cold-drawn 100 690 84 579 10 200
1050 OQT 1300 96 662 61 421 30 192
1050 OQT 400 143 986 110 758 10 321
1117 Hot-rolled 65 448 40 276 33 124
1117 Cold-drawn 80 552 65 448 20 138
1117 WQT 350 89 614 50 345 22 178
1137 Hot-rolled 88 607 48 331 15 176
1137 Cold-drawn 98 676 82 565 10 196
1137 OQT 1300 87 600 60 414 28 174
1137 OQT 400 157 1083 136 938 5 352
1144 Hot-rolled 94 648 51 352 15 188
1144 Cold-drawn 100 690 90 621 10 200
1144 OQT 1300 96 662 68 496 25 200
1144 OQT 400 127 876 91 627 16 277
1213 Hot-rolled 55 379 33 228 25 110
1213 Cold-drawn 75 517 58 340 10 150
12L13 Hot-rolled 57 393 34 234 22 114
12L13 Cold-drawn 70 483 60 414 10 140
1340 Annealed 102 703 63 434 26 207
1340 OQT 1300 100 690 75 517 25 235
1340 OQT 1000 144 993 132 910 17 363
1340 OQT 700 221 1520 197 1360 10 444
1340 OQT 400 285 1960 234 1610 8 578
3140 Annealed 95 655 67 462 25 187
3140 OQT 1300 115 792 94 648 23 233
3140 OQT 1000 152 1050 133 920 17 311
3140 OQT 700 220 1520 200 1380 13 461
3140 OQT 400 280 1930 248 1710 11 555
4130 Annealed 81 558 52 359 28 156
4130 WQT 1300 98 676 89 614 28 202
4130 WQT 1000 143 986 132 910 16 302
4130 WQT 700 208 1430 180 1240 13 415
4130 WQT 400 234 1610 197 1360 12 461
4140 Annealed 95 655 54 372 26 197
4140 OQT 1300 117 807 100 690 23 235
4140 OQT 1000 168 1160 152 1050 17 341
4140 OQT 700 231 1590 212 1460 13 461
4140 OQT 400 290 2000 251 1730 11 578
4150 Annealed 106 731 55 379 20 197
4150 OQT 1300 127 880 116 800 20 262
4150 OQT 1000 197 1360 181 1250 11 401
4150 OQT 700 247 1700 229 1580 10 495
4150 OQT 400 300 2070 248 1710 10 578
4340 Annealed 108 745 68 469 22 217
4340 OQT 1300 140 965 120 827 23 280
4340 OQT 1000 171 1180 158 1090 16 363
4340 OQT 700 230 1590 206 1420 12 461
4340 OQT 400 283 1950 228 1570 11 555
5140 Annealed 83 572 42 290 29 167
5140 OQT 1300 104 717 83 572 27 207
5140 OQT 1000 145 1000 130 896 18 302
5140 OQT 700 220 1520 200 1380 11 429
5140 OQT 400 276 1900 226 1560 7 534
5150 Annealed 98 676 52 359 22 197
5150 OQT 1300 116 800 102 700 22 241
5150 OQT 1000 160 1100 149 1030 15 321
5150 OQT 700 240 1650 220 1520 10 461
5150 OQT 400 312 2150 250 1720 8 601
5160 Annealed 105 724 40 276 17 197
5160 OQT 1300 115 793 100 690 23 229
5160 OQT 1000 170 1170 151 1040 14 341
5160 OQT 700 263 1810 237 1630 9 514
5160 OQT 400 322 2220 260 1790 4 627
6150 Annealed 96 662 59 407 23 197
6150 OQT 1300 118 814 107 738 21 241
6150 OQT 1000 183 1260 173 1190 12 375
6150 OQT 700 247 1700 223 1540 10 495
6150 OQT 400 315 2170 270 1860 7 601
8650 Annealed 104 717 56 386 22 212
8650 OQT 1300 122 841 113 779 21 255
8650 OQT 1000 176 1210 155 1070 14 363
8650 OQT 700 240 1650 222 1530 12 495
8650 OQT 400 282 1940 250 1720 11 555
8740 Annealed 100 690 60 414 22 201
8740 OQT 1300 119 820 100 690 25 241
8740 OQT 1000 175 1210 167 1150 15 363
8740 OQT 700 228 1570 212 1460 12 461
8740 OQT 400 290 2000 240 1650 10 578
9255 Annealed 113 780 71 490 22 229
9255 O&T 1300 130 896 102 703 21 262
9255 O&T 1000 181 1250 160 1100 14 352
9255 O&T 700 260 1790 240 1650 5 534
9255 O&T 400 310 2140 287 1980 2 601
TABLE A2–1 Preferred Basic Sizes
Fractional (in) Decimal (in) SI metric (mm)
\begin{array}{ll}1 / 64 & 0.015625 \\1 / 32 & 0.03125 \\1 / 16 & 0.0625 \\3 / 32 & 0.09375\\1 / 8 & 0.1250\end{array} \begin{array}{ll}5 & 5.000 \\5 \frac{1}{4} & 5.250 \\5 \frac{1}{2} & 5.500 \\5 \frac{3}{4}& 5.750 \\6 & 6.000\end{array} \begin{array}{rrr}0.010 & 2.00 & 8.50 \\0.012 & 2.20 & 9.00 \\0.016 & 2.40 & 9.50 \\0.020&2.60 & 10.00 \\0.025 & 2.80 & 10.50\end{array} \begin{array}{ll}1.0 & 40 \\1.1 & 45 \\1.2 & 50 \\1.4 & 55 \\1.6 & 60\end{array}
\begin{array}{cc}5 / 32 & 0.15625 \\3 / 16 & 0.1875 \\1 / 4 & 0.2500 \\5 / 16 & 0.3125 \\3/ 8 & 0.3750\end{array} \begin{array}{ll}6 \frac{1}{2} & 6.500 \\7 & 7.000 \\7 \frac{1}{2} & 7.500 \\8 & 8.000 \\8\frac{1}{2} & 8.500\end{array} \begin{array}{lll}0.032 & 3.00 & 11.00 \\0.040 & 3.20 & 11.50 \\0.05 & 3.40 & 12.00 \\0.06& 3.60 & 12.50 \\0.08 & 3.80 & 13.00\end{array} \begin{array}{ll}1.8 & 70 \\2.0 & 80 \\2.2 & 90 \\2.5 & 100 \\2.8 & 110\end{array}
\begin{array}{cc}7 / 16 & 0.4375 \\1 / 2 & 0.5000 \\9 / 16 & 0.5625 \\5 / 8 & 0.6250\end{array} \begin{array}{lr}9 & 9.000 \\9 \frac{1}{2} & 9.500 \\10 & 10.000 \\10 \frac{1}{2} & 10.500\end{array} \begin{array}{lll}0.10 & 4.00 & 13.50 \\0.12 & 4.20 & 14.00 \\0.16 & 4.40 & 14.50 \\0.20 &4.60 & 15.00\end{array} \begin{array}{ll}3.0 & 120 \\3.5 & 140 \\4.0 & 160 \\4.5 & 180\end{array}
\begin{array}{cc}11 / 16 & 0.6875 \\3 / 4 & 0.7500 \\7 / 8 & 0.8750\end{array} \begin{array}{ll}11 & 11.000 \\11 \frac{1}{2} & 11.500 \\12 & 12.000\end{array} \begin{array}{lll}0.24 & 4.80 & 15.50 \\0.30 & 5.00 & 16.00 \\0.40 & 5.20 & 16.50\end{array} \begin{array}{ll}5.0 & 200 \\5.5 & 220 \\6 & 250\end{array}
\begin{array}{cc}1 & 1.000 \\1 \frac{1}{4} & 1.250 \\1 \frac{1}{2} & 1.500 \\1 \frac{3}{4}& 1.750\end{array} \begin{array}{ll}12 \frac{1}{2} & 12.500 \\13 & 13.000 \\13 \frac{1}{2} & 13.500 \\14 &14.000\end{array} \begin{array}{lll}0.50 & 5.40 & 17.00 \\0.60 & 5.60 & 17.50 \\0.80 & 5.80 & 18.00 \\1.00 &6.00 & 18.50\end{array} \begin{array}{rr}7 & 280 \\8 & 300 \\9 & 350 \\10 & 400\end{array}
\begin{array}{cc}2 & 2.000 \\2 \frac{1}{4} & 2.250 \\2 \frac{1}{2} & 2.500 \\2 \frac{3}{4}& 2.750\end{array} \begin{array}{ll}14 \frac{1}{2} & 14.500 \\15 & 15.000 \\15 \frac{1}{2} & 15.500 \\16 &16.000\end{array} \begin{array}{lll}1.20 & 6.50 & 19.00 \\1.40 & 7.00 & 19.50 \\1.60 & 7.50 & 20.00 \\1.80 &8.00 &\end{array} \begin{array}{ll}11 & 450 \\12 & 500 \\14 & 550 \\16 & 600\end{array}
\begin{array}{ll}3 & 3.000 \\3 \frac{1}{4} & 3.250 \\3 \frac{1}{2} & 3.500 \\3 \frac{3}{4}& 3.750\end{array} \begin{array}{ll}16 \frac{1}{2} & 16.500 \\17 & 17.000 \\17 \frac{1}{2} & 17.500 \\18 &18.000\end{array} \begin{array}{cc}18 & 700 \\20 & 800 \\22 & 900 \\25 & 1000\end{array}
\begin{array}{cc}4 & 4.000 \\4 \frac{1}{4} & 4.250 \\4 \frac{1}{2} & 4.500 \\4 \frac{3}{4}& 4.750\end{array} \begin{array}{ll}18 \frac{1}{2} & 18.500 \\19 & 19.000 \\19 \frac{1}{2} & 19.500 \\20 &20.000\end{array} \begin{aligned}&28 \\&30 \\&35\end{aligned}
5-20
5-21

Related Answered Questions