Compute the contact stress number for the gear pair described in Example Problem 9_1.
Compute the contact stress number for the gear pair described in Example Problem 9_1.
Data from Example Problem 9_1 are summarized as follows: \begin{aligned}N_{P} &=20 & N_{G} &=70, & F &=1.50 \mathrm{in} & W_{l} &=720 \mathrm{lb} & D_{P} &=2.500 \mathrm{in} \\K_{c} &=1.50 & K_{\mathrm{x}} &=1.00 & K_{m}&=1.19 & K_{v} &=1.45\end{aligned}
The gear teeth are 20°. full-depth, involute teeth. We also need the geometry factor for pitting resistance, I, From Figure 9_23(a), at a gear ratio of m_{G}= N_{G}/N_{p}= 70/20 = 3.50 and forN_{p}= 20, we read I = 0.108, approximately.The design analysis for bending strength indicated that two steel gears should be used. Then, from Table 9_9,
Gear material and modulusof elasticity.E_{G},Ib/in^{2} (MPa) | |||||||
Pinion material | Modulus of elasticity.E_{p},Ib/in^{2}
(MPa) |
Steel 30×10^{6}
(2×10^{5}) |
Malleable iron 25×10^{6}
(1.7×10^{5}) |
Nodular iron 24×10^{6}
(1.7×10^{5}) |
Cast iron 22×10^{6}
(1.5×10^{5}) |
Aluminum bronze 17.5×10^{6}
(1.2×10^{5})
|
Tin bronze 16×10^{6}
(1.1×10^{5})
|
Steel | 30×10^{6} | 2300 | 2180 | 2160 | 2100 | 1950 | 1900 |
(2×10^{5}) | (191) | (181) | (179) | (174) | (162) | (158) | |
Mall, iron | 25×10^{6} | 2180 | 2090 | 2070 | 2020 | 1900 | 1850 |
(1.7×10^{5}) | (181) | (174) | (172) | (168) | (158) | (154) | |
Nod. iron | 24×10^{6} | 2160 | 2070 | 2050 | 2000 | 1880 | 1830 |
(1.7×10^{5}) | (179) | (172) | (170) | (166) | (156) | (152) | |
Cast iron | 22×10^{6} | 2100 | 2020 | 2000 | 1960 | 1850 | 1800 |
(1.5×10^{5}) | (174) | (168) | (166) | (163) | (154) | (149) | |
Al. bronze | 17.5×10^{6} | 1950 | 1900 | 1880 | 1850 | 1750 | 1700 |
(1.2×10^{5}) | (162) | (158) | (156) | (154) | (145) | (141) | |
Tin bronze | 16×10^{6} | 1900 | 1850 | 1830 | 1800 | 1700 | 1650 |
(1.1×10^{5}) | (158) | (154) | (152) | (149) | (141) | (137) |
we find that C_{p}= 2300. Then the contact stress number is s_{c}=C_{p} \sqrt{\frac{W_{l} K_{o} K_{s} K_{m} K_{v}}{F D_{p} I}}=2300 \sqrt{\frac{(720)(1.50)(1.0)(1.19)(1.45)}{(1.50)(2.50)(0.108)}}
s_{c}=156000 psi